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A minimal implementation https://github.com/bryandlee/repurpose-gan/



semantic part segmentation

segment an unseen object from the same class.(eg. hand face leg ,belongs to
human).

an n-way per-pixel classification problem
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leverage a trained GAN to extract a pixel-wise representation from the input image

and use it as feature vectors for a segmentation network.
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1. Representation Extraction from GANs
2. Segmentation with Extracted Representation

3. Extension: Auto-shot Segmentation Network
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leverage a trained GAN to extract a pixel-wise representation from the input image

and use it as feature vectors for a segmentation network.

1. Representation Extraction from GANs
2. Segmentation with Extracted Representation

3. Extension: Auto-shot Segmentation Network
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Representation Extraction from GANs
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Representation Extraction from GANs
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This process maps each 3-dimensional RGB pixel to a C-dimensional feature vector.
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Segmentation with Extracted Representation
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Extension: Auto-shot Segmentation Network

Computing pixel-wise feature vectors using a GAN have a number of restrictions.

First, the test image needs to lie close to the image distribution modeled by the GAN;
otherwise, the latent optimization may fail to reproduce the test image, leading to poor feature

vectors.

Second, relying on a GAN to generate feature vectors through the latent optimization process is
expensive and time-consuming
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Extension: Auto-shot Segmentation Network
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Extension: Auto-shot Segmentation Network

synthesize a large set of images form paired training data.

For the auto-shot segmenter, we use o JER Fow-shot N u<_
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Experiments

Table 2: 10U scores of our 10-shot vs auto-shot segmenters on 10-class face segmentation. The auto-shot segmenter is
trained with a dataset generated by the 10-shot segmenter. Both techniques have similar performance, which demonstrates
the effectiveness of the dataset generation and auto-shot training process.

Network Weighted IOU  Eyes Mouth Nose Face Clothes Hair Eyebrows Ears Neck BG
10-shot segmenter 85.2 740 846 82.9 90.0 23.6 79.2 63.1 270 736 842
Auto-shot| segmenter 84.5 754 865 846 90.0 15.5 84.0 68.2 373 728 847

Segmentation Network  Shots  3-class  10-class

1 71.7 77.9

CNN 5 82.1 83.9
10 83.5 85.2

1 75.3 74.1

MLP 5 77.8 79.6

10 77.2 77.2
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Experiments

Table 2: 10U scores of our 10-shot vs auto-shot segmenters on 10-class face segmentation. The auto-shot segmenter is
trained with a dataset generated by the 10-shot segmenter. Both techniques have similar performance, which demonstrates

the effectiveness of the dataset generation and auto-shot training process.

Network Weighted IOU Eyes Mouth Nose Face Clothes Hair Eyebrows Neck
10-shot segmenter 85.2 740 846 82.9 90.0 23.6 79.2 63.1
Auto-shot| segmenter 84.5 754 865 846 90.0 15.5 84.0 68.2
Table 3: Per-class 10U scores on 3-class human face seg-
mentation.
Weighted IOU  Eves Mouth Nose
1 -shot T1.7 578
S-shot 52.1 736
1 0-shot B3.5 759

Table 4: 10U scores on PASCAL-Parts car segmentation.
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Table 5: IOU scores on PASCAL-Parts horse segmentation.
“-" indicates no available result.
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Experiments

To train the few-shot segmenter, we useface images and annotated segmentation
masks from CelebAMask-HQ

For horse and car, we use images generated by pretrained StyleGAN2s and
manually annotate them ourselves.



