
Yeyes Jin¹, Wenhan Yang², Robby T. Tan¹,³

¹National University of Singapore; ²Nanyang Technological University; ³Yale-NUS College
1. Introduction of Low Light Image Enhancement

Background:
High-level task are heavily dependent on the quality of the input images. Insufficient light during capture can result in information loss and noise in the dark regions of the images.

Operations:
Long exposure -> blur, High ISO -> noise amplified, Flash -> unbalanced lighting

Challenge:
When amplifying the intensity/brightness, noise also amplifies. In low-light conditions, camera sensors are sensitive and non-linear to insufficient photons, which causes color distortion.
1. Introduction of Low Light Image Enhancement

Data driven method mostly uses **paired data** to train an enhancement model.

Powerful input:
- SNR map
- Light attention map
- Edge map
- Reflection map

Powerful model:
- Complex CNN
- Unet
- Transform
- GAN

Powerful loss:
- MSE loss
- Color loss
- Light loss
- VGG loss
2. Motivation

- Low Light:
 ![Images of low light conditions]

- Light-Effects/Glare/Floodlight:
 ![Images of light effects, glare, and floodlight conditions]
2. Motivation

- Existing low-light enhancement methods:
 - ✓ Enhance low-light regions
 - × Over-enhance light-effects regions

- Existing night dehazing methods:
 - × Enhance low-light regions
 - ✓ Suppress glow; × Suppress light-effects

Main task: Boost dark regions, at the same time, suppress light-effects.
3. Challenge

1. Lack of paired training data, hard to collect ground truth
2. Synthesizing physically correct night light-effects images is challenging

Solution: propose an unsupervised night image enhancement method.
- Model-based Layer Decomposition
- Unpaired Light-Effects Suppression

Our decomposition is based on the following image-layer model:

\[I = R \odot L + G \]

This idea is based on Retinex theory. It is a ill-posed question.

Deep learning method based on Retinex theory (2019 ACMMMM Kind)

Four unsupervised loss:

Light-Effects and Shading Initialization

\[\mathcal{L}_{\text{init}} = |G - G_i|_1 + |L - L_i|_1. \]

\(L_i\) is max value of RGB channels. \(G_i\) is second-order Laplacian filter from the input image.

Gradient Exclusion Loss

\[\mathcal{L}_{\text{excl}} = \sum_{n=1}^{3} \left\| \text{tanh}(\lambda_{G_i^{\text{in}}} |\nabla G_i^{\text{in}}|) \circ \text{tanh}(\lambda_{J_{\text{init}}^{\text{in}}} |\nabla J_{\text{init}}^{\text{in}}|) \right\|_F, \]

Color Constancy Loss

\[\mathcal{L}_{\text{cc}} = \sum_{(c_1, c_2)} (|J_{\text{init}}^{c_1} - J_{\text{init}}^{c_2}|_1), \quad \text{where } (c_1, c_2) \in \{(r, g), (r, b), (g, b)\} \]

Reconstruction Loss

\[\mathcal{L}_{\text{recon}} = |I - (R \odot L + G)|_1. \]
4. Method Part 2: Light-effects Suppression
4. Method Part 2: Light-effects Suppression

\[\mathcal{L}_{\text{atten}} = - \left(\mathbb{E} \left[\log(\Gamma_{\text{gen}}(f_e)) \right] + \mathbb{E} \left[\log(1 - \Gamma_{\text{gen}}(f_{ef})) \right] \right). \]
4. Method Part2: Light-effects Suppression

\[\mathcal{L}_{\text{adv}} = \mathbb{E} \left[\log (\phi_{\text{dis}}(J_{\text{ef}})) \right] + \mathbb{E} \left[\log (1 - \phi_{\text{dis}}(J_{\text{refine}})) \right] \]

Losses

\[
\sum: \text{Weighted Sum} \quad c \in (r, g, b)
\]

Input \(I \)

\(I_c \)

\(w_c \)

\(I_{gray} \)

\(\phi_{HF}(I_{gray}) \)

\(\phi_{VGG}(I_{gray}) \)

\(J_{refine} \)

Losses
Results on Light-Effects Suppression

Results on Light-Effects Suppression

- Dark Zurich Dataset

![Image showing comparison of different methods for light-effects suppression.](image-url)
Results on Low-light Enhancement

Quantitative comparisons on the LOL-test dataset

<table>
<thead>
<tr>
<th>Learning</th>
<th>Method</th>
<th>LOL-test</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MSE($\times 10^3$)</td>
<td>PSNR↑</td>
<td>SSIM↑</td>
<td>LPIPS↓</td>
<td></td>
</tr>
<tr>
<td>Opti</td>
<td>LIME [14]</td>
<td>-</td>
<td>16.760</td>
<td>0.560</td>
<td>0.350</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>RetinexNet [7]</td>
<td>1.651</td>
<td>16.774</td>
<td>0.462</td>
<td>0.474</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KinD++ [47]</td>
<td>1.298</td>
<td>17.752</td>
<td>0.760</td>
<td>0.198</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Afifi [1]</td>
<td>4.520</td>
<td>15.300</td>
<td>0.560</td>
<td>0.392</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>RUAS [24]</td>
<td>3.920</td>
<td>18.230</td>
<td>0.720</td>
<td>0.350</td>
<td></td>
</tr>
<tr>
<td>ZSL</td>
<td>ZeroDCE [13]</td>
<td>3.282</td>
<td>14.861</td>
<td>0.589</td>
<td>0.335</td>
<td></td>
</tr>
<tr>
<td>SSL</td>
<td>DRBN [40]</td>
<td>2.350</td>
<td>15.125</td>
<td>0.472</td>
<td>0.316</td>
<td></td>
</tr>
<tr>
<td>UL</td>
<td>EnlightenGAN [15]</td>
<td>1.998</td>
<td>17.483</td>
<td>0.677</td>
<td>0.322</td>
<td></td>
</tr>
<tr>
<td>SSL</td>
<td>Sharma [32]</td>
<td>3.350</td>
<td>16.880</td>
<td>0.670</td>
<td>0.315</td>
<td></td>
</tr>
<tr>
<td>UL</td>
<td>Ours</td>
<td>1.070</td>
<td>21.521</td>
<td>0.763</td>
<td>0.235</td>
<td></td>
</tr>
</tbody>
</table>

Quantitative comparisons on the LOL-Real dataset

<table>
<thead>
<tr>
<th>Learning</th>
<th>Method</th>
<th>NA</th>
<th>Opti</th>
<th>Opti</th>
<th>Opti</th>
<th>ZSL</th>
<th>ZSL</th>
<th>ZSL</th>
<th>ZSL</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>PSNR↑</td>
<td></td>
<td>9.72</td>
<td>17.33</td>
<td>17.34</td>
<td>17.34</td>
<td>11.43</td>
<td>12.67</td>
<td>14.85</td>
<td>20.54</td>
<td>15.33</td>
</tr>
<tr>
<td>SSIM↑</td>
<td></td>
<td>0.18</td>
<td>0.66</td>
<td>0.68</td>
<td>0.68</td>
<td>0.36</td>
<td>0.41</td>
<td>0.56</td>
<td>0.78</td>
<td>0.52</td>
</tr>
<tr>
<td>Learning</td>
<td>SL</td>
<td>SL</td>
<td>SL</td>
<td>SL</td>
<td>SL</td>
<td>SL</td>
<td>SSL</td>
<td>UL</td>
<td>SSL</td>
<td>UL</td>
</tr>
<tr>
<td>PSNR↑</td>
<td></td>
<td>17.56</td>
<td>15.47</td>
<td>13.27</td>
<td>19.40</td>
<td>16.38</td>
<td>19.66</td>
<td>18.23</td>
<td>18.34</td>
<td>25.53</td>
</tr>
<tr>
<td>SSIM↑</td>
<td></td>
<td>0.54</td>
<td>0.56</td>
<td>0.45</td>
<td>0.69</td>
<td>0.53</td>
<td>0.76</td>
<td>0.61</td>
<td>0.64</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Results on Low-light Enhancement

- **LOL-test dataset**

- **LOL-Real dataset**

<table>
<thead>
<tr>
<th>Input</th>
<th>Ground Truth</th>
<th>Ours</th>
<th>Sharma</th>
<th>EG</th>
</tr>
</thead>
</table>
Conclusion

- We presented an **unsupervised learning** framework for night image enhancement, which boost dark regions and suppress light-effects simultaneously.

- With light-effects layer guidance, our method separate **white/multi-colored light-effects** more properly.

- With unsupervised structure and HF-features consistency loss, our method **restore the background details**.