

October 23-27, 2022, Tel Aviv

Unsupervised Night Image Enhancement: When Layer Decomposition Meets Light-Effects Suppression

Yeying Jin¹, Wenhan Yang², Robby T. Tan^{1,3}

¹National University of Singapore; ²Nangyang Technological University; ³Yale-NUS College

1.Introduction of Low Light Image Enhancement

Background:

High-level task are heavily dependent on the quality of the input images. Insufficient light during capture can result in information loss and noise in the dark regions of the images.

Operations:

Long exposure -> blur, High ISO -> noise amplified, Flash -> unbalanced lighting

Challenge:

When amplifying the intensity/brightness, noise also amplifies.

In low-light conditions, camera sensors are sensitive and non-linear to insufficient photons, which causes color distortion.

1.Introduction of Low Light Image Enhancement

Data driven method mostly uses **paired data** to train an enhancement model.

Powerful input:

- SNR map
- Light attention map
- Edge map
- Reflection map

• • • • • •

Powerful model:

- Complex CNN
- Unet
- Transform
- GAN

.....

Powerful loss:

- MSE loss
- Color loss
- Light loss
- VGG loss

.....

2. Motivation

≻Low Light:

Light-Effects/Glare/Floodlight:

2. Motivation

Existing low-light enhancement methods:

Enhance low-light regions

× Over-enhance light-effects regions

SOTA Enhance Output Low-light regions

Existing night dehazing methods:

× Enhance low-light regions

✓ Suppress glow; × Suppress light-effects

Main task: Boost dark regions, at the same time, suppress light-effects.

3.Challenge

- 1. Lack of **paired** training data, hard to collect ground truth
- 2. Synthesizing physically correct night light-effects images is challenging

Solution: propose an *unsupervised* night image enhancement method.

- Model-based Layer Decomposition
- Unpaired Light-Effects Suppression

4. Method Part1: Layer Decomposition

Our decomposition is based on the following image-layer model: $\mathbf{I} = \mathbf{R} \odot \mathbf{L} + \mathbf{G}$

This idea is based on Retinex theory. It is a ill-posed question.

反射物体R(x,y)sdn.nel/qq_33668060

4. Method Part1: Layer Decomposition

Deep learning method based on Retinex theory (2019 ACMMM Kind)

4. Method Part1: Layer Decomposition

Four unsupervised loss:

Light-Effects and Shading Initializa $\mathcal{L}_{\mathrm{init}} = |\mathbf{G}-\mathbf{G}_{\mathrm{i}}|_1 + |\mathbf{L}-\mathbf{L}_{\mathrm{i}}|_1.$

 L_i is max value of RGB channels. G_i is second-order Laplacian filter from the input image.

$$Gradient \ Exclusion \ Loss \mathcal{L}_{excl} = \sum_{n=1}^{3} \left\| \tanh(\lambda_{\mathbf{G}^{\downarrow n}} |\nabla \mathbf{G}^{\downarrow n}|) \circ \tanh(\lambda_{\mathbf{J}_{init}^{\downarrow n}} |\nabla \mathbf{J}_{init}^{\downarrow n}|) \right\|_{F},$$

(b) Light-Effects Layer G (c) Gradient Histogram of G

Color Constancy Loss $\mathcal{L}_{cc} = \sum_{(c1,c2)} (|\mathbf{J}_{init}^{c1} - \mathbf{J}_{init}^{c2}|_1),$ where $(c1,c2) \in \{(r,g), (r,b), (g,b)\}$

Reconstruction Loss $\mathcal{L}_{recon} = |\mathbf{I} - (\mathbf{R} \odot \mathbf{L} + \mathbf{G})|_1.$

4. Method Part2: Light-effects Suppression

4. Method Part2: Light-effects Suppression

$$\mathcal{L}_{\text{atten}} = -\left(\mathbb{E}\left[\log(\Gamma_{\text{gen}}(f_{\text{e}}))\right] + \mathbb{E}\left[\log(1 - \Gamma_{\text{gen}}(f_{\text{ef}})))\right]\right).$$

4. Method Part2: Light-effects Suppression

4.Method Part3: Structure and HF-features Losses

4.Method Part3: Structure and HF-features Losses

Results on Light-Effects Suppression

Results on Light-Effects Suppression

Dark Zurich Dataset

Results on Low-light Enhancement

Quantitative comparisons on the LOL-test dataset

Learning	Mothod	LOL-test				
	Method	$MSE(\times 10^3)\downarrow$	$\mathrm{PSNR}\uparrow$	$\mathrm{SSIM}\uparrow$	LPIPS↓	
Opti	LIME [14]	-	16.760	0.560	0.350	
	RetinexNet [7]	1.651	16.774	0.462	0.474	
	KinD++ [47]	1.298	17.752	0.760	0.198	
SL	Afifi [1]	4.520	15.300	0.560	0.392	
	RUAS [24]	3.920	18.230	0.720	0.350	
ZSL	ZeroDCE [13]	3.282	14.861	0.589	0.335	
SSL	DRBN [40]	2.359	15.125	0.472	0.316	
UL	EnlightenGAN [15]	1.998	17.483	0.677	0.322	
SSL	Sharma [32]	3.350	16.880	0.670	0.315	
UL	Ours	1.070	21.521	0.763	0.235	

Quantitative comparisons on the LOL-Real dataset.

Learning	NA	Opti	Opti	Opti	ZSL	ZSL	ZSL	ZSL	SL
Method	Input	JED [29]	RRM [21]	SRIE $[9]$	RDIP [48]	MIRNet [43]	RRDNet [50]	ZD [13]	RUAS [24
$PSNR\uparrow$	9.72	17.33	17.34	17.34	11.43	12.67	14.85	20.54	15.33
$SSIM\uparrow$	0.18	0.66	0.68	0.68	0.36	0.41	0.56	0.78	0.52
Learning	SL	SL	SL	SL	SL	SSL	UL	SSL	UL
Method	LLNet [25]	RN [7]	DUPE [34]	SICE $[6]$	Afifi [1]	DRBN [41]	EG [15]	Sharma [32]	Ours
$PSNR\uparrow$	17.56	15.47	13.27	19.40	16.38	19.66	18.23	18.34	25.53
$\mathrm{SSIM}\uparrow$	0.54	0.56	0.45	0.69	0.53	0.76	0.61	0.64	0.88
00101	0.01	0.00	0.10	0.00	0.00	0.10	0.01	0.01	0.00

Results on Low-light Enhancement

LOL-test dataset

Conclusion

>We presented an **unsupervised learning** framework for night image enhancement, which boost dark regions and suppress light-effects simultaneously.

With light-effects layer guidance, our method separate white/multi-colored lighteffects more properly.

Input Light-Effects Layer $w/o \mathbf{G}$ guidance w/\mathbf{G} guidance

With unsupervised structure and HF-features consistency loss, our method restore the background details.

Input w/o $\mathcal{L}_{gray-feat}$ w/ $\mathcal{L}_{gray-feat}$