VanillaNet: the Power of Minimalism in Deep Learning Hanting Chen¹, Yunhe Wang¹*, Jianyuan Guo¹, Dacheng Tao² ¹ Huawei Noah's Ark Lab. ² School of Computer Science, University of Sydney. # Content - Background - Motivation - Method - Result - Extension # Background Mainstream network architectures - Residual-based - Transformer-based **Both**: numerous layers with a large number of neurons or transformer blocks Is their status unassailable? ## Motivation #### **Previous problems** Can we eschew all of this? - Inherent **complexity**(high depth, shortcuts, self-attention...) - Hard for **deployment** Yes. VanillaNet Significant off-chip memory traffic sophisticated engineering **implementation**, e.g. Rewriting CUDA code ## Method-overview # Method-techniques Let's consider why the current network is weak Weak non-linearity **Deep Training Strategy** **Series Informed Activation** Function ## Deep training #### Deep Training Strategy arch1 arch2 (e.g. RepVGG) $Conv + BN \rightarrow new conv$ $$W_i' = \frac{\gamma_i}{\sigma_i} W_i, B_i' = \frac{(B_i - \mu_i)\gamma_i}{\sigma_i} + \beta_i$$ $$Conv(X) = WX + B$$ $$BN(X) = \gamma * \frac{X - \mu}{\sigma} + \beta$$ $$newconv(X) = BN(Conv(X))$$ $$= \gamma * \frac{WX + B - \mu}{\sigma} + \beta$$ $$= \left[\gamma * \frac{W}{\sigma} \middle| X + \left[\gamma * \frac{B - \mu}{\sigma} + \beta\right]\right]$$ $$W' \qquad B'$$ ### Series Informed Activation Function # improve non-linearity 1. **serially stacking** of activation function def forward(self, x): if self.deploy: 2. **increase the non-linearity** of activation layer return torch.nn.functional.conv2d(super(activation, self).forward(x), return self.bn(torch.nn.functional.conv2d(super(activation, self).forward(x), Choice2: **concurrently** stacking activation layer $$A_s(x) = \sum_{i=1}^n a_i A(x + b_i)$$ learn the global information by **varying the inputs from their neighbors** $$A_s(x_{h,w,c}) = \sum_{i,j \in \{-n,n\}} a_{i,j,c} A(x_{i+h,j+w,c} + b_c)$$ HantingChen commented last week else: Collaborator ... depthwise conv Similar to Batch Normalization with Enhanced Linear **Transformation** Thanks for the attention. We use the depth conv as an efficient implementation of our activation function, which is same as Eq. (6) in our paper. Each element of the output of this activation is related to various non-linear inputs, which can be regarded as concurrently stacking. self.weight, padding=self.act_num, groups=self.dim)) self.weight, self.bias, padding=self.act num, groups=self.dim ## Result comparable performance • Much smaller depth and latency Table 4: Comparison on ImageNet. Latency is tested on Nvidia A100 GPU with batch size of 1. | Model | Params (M) | FLOPs (B) | Depth | Latency (ms) | Acc (%) | Real Acc (%) | |---------------------------------|------------|-----------|-------|--------------|---------|--------------| | MobileNetV3-Small [21] | 2.5 | 0.06 | 48 | 6.65 | 67.67 | 74.33 | | MobileNetV3-Large [21] | 5.5 | 0.22 | 48 | 7.83 | 74.04 | 80.01 | | ShuffleNetV2x1.5 [39] | 3.5 | 0.30 | 51 | 7.23 | 73.00 | 80.19 | | ShuffleNetV2x2 [21] | 7.4 | 0.58 | 51 | 7.84 | 76.23 | 82.72 | | RepVGG-A0 [12] | 8.1 | 1.36 | 23 | 3.22 | 72.41 | 79.33 | | RepVGG-A1 [12] | 12.8 | 2.37 | 23 | 3.24 | 74.46 | 81.02 | | RepVGG-B0 [12] | 14.3 | 3.1 | 29 | 3.88 | 75.14 | 81.74 | | RepVGG-B3 [12] | 110.9 | 26.2 | 29 | 4.21 | 80.50 | 86.44 | | ViTAE-T [48] | 4.8 | 1.5 | 67 | 13.37 | 75.3 | 82.9 | | ViTAE-S [48] | 23.6 | 5.6 | 116 | 22.13 | 82.0 | 87.0 | | ViTAEV2-S [55] | 19.2 | 5.7 | 130 | 24.53 | 82.6 | 87.6 | | ConvNextV2-A [46] | 3.7 | 0.55 | 41 | 6.07 | 76.2 | 82.79 | | ConvNextV2-F [46] | 5.2 | 0.78 | 41 | 6.17 | 78.0 | 84.08 | | ConvNextV2-P [46] | 9.1 | 1.37 | 41 | 6.29 | 79.7 | 85.60 | | ConvNextV2-N [46] | 15.6 | 2.45 | 47 | 6.85 | 81.2 | x | | ConvNextV2-T [46] | 28.6 | 4.47 | 59 | 8.40 | 82.5 | 2 | | ConvNextV2-B [46] | 88.7 | 15.4 | 113 | 15.41 | 84.3 | * | | Swin-T [31] | 283 | 4.5 | 48 | 10.51 | 81 18 | 86.64 | | Swin-S [31] | 49.6 | 8.7 | 96 | 20.25 | 83.21 | 87.60 | | ResNet-18-TNR [45] | 117 | 1.8 | 18 | 3.12 | 70.6 | 79.4 | | ResNet-34-TNR [45] | 21.8 | 3.7 | 34 | 5.57 | 75.5 | 83.4 | | ResNet-50-TNR [45] | 25.6 | 4.1 | 50 | 7.64 | 79.8 | 85.7 | | VanillaNet-5 | 15.5 | 5.2 | 5 | 1.61 | 72.49 | 79.66 | | VanillaNet-6 | 32.5 | 6.0 | 6 | 2.01 | 76.36 | 82.86 | | VanillaNet-7 | 32.8 | 6.9 | 7 | 2.27 | 77.98 | 84.16 | | VanillaNet-8 | 37.1 | 7.7 | 8 | 2.56 | 79.13 | 85.14 | | VanillaNet-9 | 41.4 | 8.6 | 9 | 2.91 | 79.87 | 85.66 | | VanillaNet-10 | 45.7 | 9.4 | 10 | 3.24 | 80.57 | 86.25 | | VanillaNet-11 | 50.0 | 10.3 | 11 | 3.59 | 81.08 | 86.54 | | VanillaNet-12 | 54.3 | 11.1 | 12 | 3.82 | 81.55 | 86.81 | | VanillaNet-13 | 58.6 | 11.9 | 13 | 4.26 | 82.05 | 87.15 | | VanillaNet-13-15× | 127.8 | 26.5 | 13 | 7.83 | 82 53 | 87.48 | | VanillaNet-13-1.5× [†] | 127.8 | 48.9 | 13 | 9.72 | 83.11 | 87.85 | # **Ablation Study** Table 2: Ablation study on different networks. | Network | Deep train. | Series act. | Top-1 (%) | | |--------------|-------------|-------------|-----------|--| | Ì | | | 59.58 | | | VanillaNet-6 | √ | | 60.53 | | | | | ✓ | 75.23 | | | | ✓ | ✓ | 76.36 | | | AlexNet | Ì | 1. | 57.52 | | | | ✓ | | 59.09 | | | | | ✓ | 61.12 | | | | ✓ | ✓ | 63.59 | | | ResNet-50 | | | 76.13 | | | | ✓ | | 76.16 | | | | tet | ✓ | 76.30 | | | | ✓ | ✓ | 76.27 | | Table 3: Ablation on adding shortcuts. | Type | Top-1 (%) | |---------------------|-----------| | no shortcut | 76.36 | | shortcut before act | 75.92 | | shortcut after act | 75.72 | The shortcut is **useless** for bringing up the non-linearity and may decrease non-linearity deep training technique is **useful for the shallow** network ## Extension - 1. What is most important for the performance improvement of a deep neural network? - Depth? Receptive field? Attention? Params?... 2. Could we replace the complex backbones of current big visual models with simple, shallow yet effective backbones?