Generic-to-Specific Distillation of Masked Autoencoders

Wei Huang!? Zhiliang Peng%* Li Dong?, Furu Wei?, Jianbin Jiao™', Qixiang Yel
University of Chinese Academy of Sciences’
Microsoft Research?



model

image
size

#param. FLOPs

throughput
(image / s) top-1 acc.

IN-1K

ImageNet-1K trained models

e RegNetY-16G [54] 224> 84M 16.0G  334.7 82.9
eEffNet-B7 [71] 600> 66M 37.0G  55.1 84.3
o EffNetV2-L [72] 480® 120M 53.0G  83.7 85.7
DeiT-S [73] 2247 22M 4.6G 9785 79.8
DeiT-B [73] 224> 8M 17.6G  302.1 81.8
Swin-T 2247 28M 45G 7579 81.3
e ConvNeXt-T 224> 29M 4.5G 7747 82.1
Swin-S 224> 50M 8.7G  436.7 83.0
e ConvNeXt-S 2242 50M 8.7G  447.1 83.1
Swin-B 224> 88M 154G  286.6 83.5
e ConvNeXt-B 224> 89M 154G 292.1 83.8
Swin-B 384> 88M 47.1G  85.1 84.5
e ConvNeXt-B 384 89M 450G  95.7 85.1
e ConvNeXt-L 2242 198M 344G 1468 84.3
e ConvNeXt-L 384 198M 101.0G 50.4 85.5
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Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

encoder dec. depth  ft acc hours  speedup
VIT-L, w/ 8 84.2 }2.4 -
ViT-L 8 84.9 15.4 2.8x
ViT-L 1 84.8 11.6 3.7x
ViT-H, w/ 3 - 119.6 -
ViT-H 8 85.8 34.5 3.5x%
ViT-H 1 85.9 29.3 4.1x

Table 2. Wall-clock time of our MAE training (800 epochs),
benchmarked in 128 TPU-v3 cores with TensorFlow. The speedup
is relative to the entry whose encoder has mask tokens (gray). The
decoder width is 512, and the mask ratio is 75%. ': This entry is
estimated by training ten epochs.



* We propose general-to-specific distillation (G2SD) to
A ViT-Tiny ViT-Small A transfer task-agnostic and task-specific knowledge from

2 I8 - masked autoencoders to lightweight ViTs, setting a
§, solid baseline for two-stage vision model distillation.
% 76 ~ ,f:iﬁv:‘
§ 74 bl « We design a simple-yet-effective generic distillation
m / strategy by aligning the student’s predictions with hid-
7 A den features of the pre-trained masked autoencoder at
DeiT MAE G2SD DeiT MAE G2SD visible and masked patches.

Figure 1. Comparison of single-stage distillation models (from
scratch [4!] and pre-trained by the self-supervised method
MAE [17]) with the two-stage distillation counterparts (G2SD)
using the same teacher model. G.D and S.D respectively denote
generic and specific distillation. 7 is the symbol of distillation.

* Experiments show that the lightweight student model
with G2SD achieves competitive results across vision
tasks, improving the performance of lightweight ViT
models to a new height.



Vision Transformer (ViT)
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Generic Distillation: Task-agnostic knowledge Transfer
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Specific Distillation: Task-specific Representation Configuration

Task-specific [ Ground Truth ]
Knowledge LT* ]
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§ %‘IK T —: a&‘\/‘?}. T !
- O @y !
2 ) = . Lxp as the task-specific distillation loss function
o Encoder 0 Brcoder
= t
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where Y is the ground truth and /3 is the regularization fac-

g/___/ tor (Refer to Appendix A for details).
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Analysis

The single-stage task-specified
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Obviously, the mutual information
Figure 2. Diagram of the proposed generic-to-specific distillation (G2SD). [M] denotes mask token. In the generic distillation stage (/eft), : .
masked images are converted to patches and fed to both the teacher and student encoders for feature extraction. Feature predictions of the defi ned b y G2SD IS_ Iar_ger than that
student decoder are aligned with those of the teacher at both visible and predicted patches. In the specific distillation stage (right), student by S ngle-stage, which Impl Ies
models are trained to have consistent predictions with teacher models fine-tuned on the specific task. more information can be

transferred by our G2SD approach.



Experiments

Datasets. The generic distillation is conducted on
ImageNet-1k [19] training set with 1.2M images. Follow-
ing self-supervised recipes [ | 3], we do not use the label in-
formation, so that lightweight models focus on soaking up
the task-agnostic representations. In specific distillation, the
models are fine-tuned from the previous stage on ImageNet-
1k [39], MS COCO [26] and ADE20K [5%] datasets.

For image classification, we take a fine-tuned ViT-
base model as the teacher, which is officially released by
MAE [13] and achieves 83.6% top-1 accuracy. Following
DeiT [+ 1] distillation recipe, we append a distillation token
to the student model for token-based distillation and use the
hard decision of the teacher as the distillation label. The
student model is trained for 200 epochs.
achieves 82.5% top-1 accuracy, which outperforms CNN-
based ConvNeXt by 0.4%, by using fewer parameters (22M
vs. 29M). G2SD consistently outperforms self-supervised
methods, BEIT and CAE, by 0.8% and 0.5%, respectively.
Compared with those distillation methods, G2SD shows
the superiority. Remarkably, with the limited parameters
(~6M), G2SD reports a substantial gain compared to Dei'T-
Ti™ and carefully designed MobileNet-v3.

Table 1. Top-1 accuracy on ImageNet-1k.

Method Teacher #Param(M) Acc (%)
DeiT-Ti [4]1] 5 72.2
MobileNet-v3 [19] 5 752
ResNet-18 [15] 12 69.8
DeiT-S [41] 22 79.8
BEiT-S [/] N/A 22 81.7
CAE-S [§] 22 82.0
DINO-S [5] 22 82.0
iBOT-S [5Y] 22 82.3
ResNet-50 [15] 25 76.2
Swin-T [ 28] 28 81.3
ConvNeXt-T [29] 29 82.1
DeiT-Tim [41] 6 74.5
DeiT-S™[+1] RegNetY- 22 81.2
DearKD-Ti [ 7] 16GF 6 74.8
DearKD-S [7] 22 81.5
Manifold-Ti [2 ] 6 75.1
Manifold-S [2 1] CaiT- 22 81.5
MKD-Ti [27] S24 6 76.4
MKD-S [27] 22 82.1
SSTA-Ti [19] DeiT-S 6 D2
SSTA-S [49] DeiT-B 22 81.4
DMAE-Ti [}] 6 70.0
DMAE-S [ 7] 22 79.3
G2SD-Ti (ours) MAE-B 6 77.0
G2SD-S (ours) 22 82.5




For object detection and instance segmentation tasks,
we follow the ViTDet [25] framework, where the official
ViTDet-Base [25] model are used as the teacher. The
Feature-Richness Score method [ | 7] is adopted to stress im-
portant features that are distilled from the teacher to the stu-
dent model. Student models are trained with batch size 64
for 100 epochs. The input image resolution is 1024 x 1024.

Table 2. Object detection and instance segmentation results on the
MS COCO dataset.

Method #Param(M) APbor  Apmask
Mask R-CNN [14], 36 epochs + Multi-Scale
CAE-S [¥] 46.1 44.1 39.2
ViT-Adapter-T [V] 28.1 46.0 41.0
Swin-T [2¥] 47.8 46.0 41.6
ConvNeXt-T [29] 48.1 46.2 41.7
imTED-S [56] 30.1 48.0 42.8
ViT-Adapter-S [Y] 47.8 48.2 42.8
ViTDet [25], 100 epochs + Single-Scale
DeiT-S™ [41] 44.5 47.2 41.9
DINO-S [5] 44.5 49.1 433
iBOT-S [59] 44.5 49.7 44.0
G2SD-Ti (ours) 277 46.3 41.6

G2SD-S (ours) 44.5 50.6 44.8

For semantic segmentation, we use UperNet [51] task
layers and distill the model for 160K iterations. Due to the

absence of officially released model weights, we fine-tune
the MAE pre-trained ViT-Base model on ADE20k by using

the BEIT [+] semantic segmentation codebase to get teacher
model, which achieves 48.3 mloU, is comparable to MAE
official report. During specific distillation, besides the su-
pervision from the ground-truth, activation maps from the
student and the teacher are aligned w.r.t. the channel di-
mension [40].

Table 3. ADE20K validation results using UperNet [51]. The in-
put image resolution is 512x512.

Method #Param(M) mloU
ViT-Adapter-Ti [Y] 36.1 42.6
Swin-T [25] 59.9 44.5
ConvNeXt-T [29] 60 46.0
ViT-Adapter-S [V] 57.6 46.6
DINO-S [5] 42.0 44.0
iBOT-S [5Y] 42.0 45.4
G2SD-Ti (ours) 11.0 44.5
G2SD-S (ours) 42.0 48.0




Ablation studies

Table 4. Ablation study on single-stage and two-stage distillation methods, where G2SD w/o S.D denotes only performing generic distil-
lation (i.e., without specific distillation) and MAE means performing task-specific distillation during fine-tuning phase of MAE [ 7].

Method Params Throughout Generic Specific ImageNet-1k MS COCO ADE20k
(M) (Images/s)  Distillation Distillation Top-1Acc (%) AP"°* AP™**  mloU
Teacher: ViT-Base 86.57 1.0> N/A N/A 83.6 51.6
Student: ViT-Tiny
MAE [ 7] 572 5.84 % X X 752 37.9 349 36.9
MAEM[13] 5.91 5.74 % X v 75.9 43.5 39.0 42.0
G2SD w/o S.D (ours) 5.72 5.84 % v X 76.3 44.0 39.6 414
G2SD (ours) 5.91 5.74 % v v 77.0 46.3 41.3 44.5
Student: ViT-Small
MAE [13] 22.05 2.62x X X 81.5 45.3 40.8 41.1
MAEM [ 7] 22.44 2.58x% X v 81.9 48.9 43.5 449
G2SD w/o S.D (ours) 22.05 2.62x v X 82.0 499 44.5 46.2
G2SD (ours) 22.44 2.58 % v v 82.5 50.6 44.8 48.0




Table 5. Ablation study on generic distillation targets. e}, 2! and
R(el) respectively denote teacher encoder features, teacher de-
coder features, the relation among teacher encoder features. #5 is
the default setting.

e! R(et) 2t £t Accuracy mloU
larget | . 'y iev icv ieM (%) (%)
#1 v 81.60 43.69
#2 v 81.45 43.64
#3 v 81.96 45.20
#4 v v 81.85 44.12
#5 v v 81.99 46.19

Table 6. Ablation on the mask ratio (fop) and target layer of the
teacher model used for distillation (bottom).

Mask ratio |0.05 023 053 @.75 0.9
Top—lAcc(%)|81.7 81.7 81.6 820 81.8

Layer Index | 1 2 4 6 8
Top—lAcc(%)|81.6 81.8 82.0 81.8 8.7

Table 7. Ablation study on the width and depth (D) of the student
decoder. The depth and width of the teacher’s decoder are 8 and
512, respectively.

Width | D Acc(%) | D Acc(%) | D Acc(%)

128 81.9 81.8 81.7
256 2 81.7 4 82.0 8 81.7
512 81.8 81.7 80.3

Width: embedding dimension
Depth: number of Transformer blocks
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Figure 3. Performance degradation (leff) and CKA similarity
(right) between the representations generated by the complete im-
age and the corrupted image with various mask ratios.

Table 8. Robustness evaluation. “IN” is short for ImageNet.

Methods IN IN-A IN-R IN-S 1IN-V2
Teacher: ViT-Base 83.6 35.9 48.3 34.5 13.2

Student: ViT-Tiny

DeiT™ [41] 753 9.5 36.2 234 63.3

MAE™ [ 7] 759 109 38.7 26.3 64.7

G2SD (ours) 770 129 39.0 259 65.6
Student: ViT-Small

DeiT™ [41] 818 242 459 32.1 g iy |

MAE™ [13] 819 266 468 343 711

G2SD (ours) 825 294 468 336 721
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Figure 4. CKA similarity between representations generated by
pre-trained MAE-B with: (a) pre-trained MAE-Ti and G2SD-Ti
w/o S.D, and (b) MAE-S and G2SD-S w/o S.D. CKA similarity
between representations generated by fine-tuned MAE-B with: (c)
fine-tuned MAE-Ti¥ rn, DeiT-Ti™, and G2SD-Ti, and (d) fine-tuned
MAE-S™, DeiT-S™, and G2SD-S. x-axis denotes network depth.
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Figure 3. The default knowledge distillation strategy of TinyMIM. The student (e.g. ViT-B) is optimized to mumic the relations generated by
the intermediate block of & MIM pre-trained teacher (e.g. VIT-L) with raw image ax input. We replace the last block of the student with an
adaptive block to match teacher’s head number (no extra computational cost). After pre-training (knowledge distillation). the student model

can be transferred to varioas downstream tasks. tion s conducted hetween the teacher logits and student outputs. Note that e
Method Pretraining Tokenizer/ Tokenizer/Teacher Classification  Segmentation two branches are independent and asynchronous,
C . . . . .
Epochs Teacher Data Top-1 Acc (%) mloU Table 4: TinyViT performance on IN-1k [18] with comparisons to state-of-the-art
Tiny-size models (ViT-T716) models. MACs (multiply—accumulate operations) and Throughput are measured
Scratch [+4] 300 Label INIK 722 38.0 : : : 9, ~. : 5
MR (1) hoedt s i e e using the GitHub reposrfor.y of' [1,24] and a VIQO GPU. ™ pretrE.mn on IN-21k
MoCo (4] 1600 EMA INIK 733 39.3 with the proposed fast distillation; 7: finetune with higher resolution.
TinyMIM (Ours) 300 TinyMIM-ViT-S INIK 75.8 44.0/44.6* i Top-1 Top-5 || #Params MACs Throughput bt Jindh
TinyMIM* (Ours) 300 TinyMIM-ViT-S INIK 79.6 45.0¢ (%) (%) (M) (G)  (images/s) p =
Small-size models (ViT-5/16) % | MoblieViT-S [46] 78.4 = 6 1.8 2,661 256 Hybrid
Seratch [ 4] 300 Label INIK 79.9 43.1 & | VITAS-DeiT-A [60] 75.5 924 6 1.3 3,504 224  Trans
MAET [ 5] 1600 Pixel INIK 80.6 428 & | GLiT-Tiny [9] 76.3 - 7 1.5 3,262 224  Trans
MoCo [7] 1600 EMA INIK 814 439 F# | Mobile-Former-214M [14] 76.7 - 9 0.2 3,105 224 Hybrid
DINO [ 7] 1600 EMA INIK 81.5 453 g CrossViT-9 [10] 48| - 9 2.0 2,659 224  Trans
CIM[!7] 1600 Pixel INIK 81.6 z = | TinyViT-5M (ours) 79.1 948 5.4 1.3 3,060 224 Hybrid
TinyMIM (Ours) 300 TinyMIM-ViT-B INIK 83.0 48.4/48.9° TinyViT-5M™ (ours) 80.7 95.6 5.4 1.3 3.060 224 Hybrid
Base-size models (ViT-B/16) ResNet-18 [2§] 70.3  86.7 12 1.8 8,714 224 CNN
Scratch [ 4] 300 Label INIK 81.2 472 _ | PVT-Tiny [66] 751 - 13 1.9 2,791 224 Trans
BeiT [ 800 DALL-E  DALLE250M+IN22K+INIK 83.2 456 & | ResT-Small [81] 79:0: 949 1 2.1 ik 224 Trans
WAEC e P ik ne meen o 82 | ¥ o2 = e
SIM [11] 1600 EMA INIK 83.8 - O e o ; ' ’ o
A @0 DNLE  DALRMMMNKGNK B 2 e, las| 2 B 2 B
MaskFeat [ 7] 1600 HOG INIK 84.0 - -
SAAE |7) 300 EMA INIK 84.1 486 DeiT-S [64] 79.9  95.0 22 4.6 2,276 224  Trans
data2vec [ 1] 800 EMA INIK 842 . T2T-ViT-14 [74] 8L5  95.7 21 4.8 1,557 224  Trans
PeCo|!!] 300 VQGAN INIK 84.1 46.7 = | AutoFormer-S [11] 81.7 95.7 23 5.1 1,341 224  Trans
PeCo[11] 800 VQGAN INIK 84.5 485 = | Swin-T [43] 812 955 28 45 1,393 224 Trans
TinyMIM (Ours) 300 MAE-ViT-L INIK 85.0 52.2/52.6' CrossViT-15 [10] 823 - 28 6.1 1,306 224 Trans
EfiNet-B5 [62] 83.6 96.7 30 9.9 330 456  CNN
Table 3. Fine-tuning results on ImageNet-1K and ADE20K. All models are pre-trained on ImageNet-1K. “Tokenizer/Teacher Data™; training Ty VIT-21M {anty) Bb1. 964 = L9 el 224 Hyoeld
. > s . 2 : 1 : TinyViT-21M7? (ours) 84.8 97.3 21 4.3 1,571 224 Hybrid
data of teacher and tokenizer. {: reproduced result using official code, *: the model is fine-tuned for 1000 epochs with DeiT-style [14] % < R ;
knowledge distillation. £: the model adopts an intermediate fine-tuning on ImageNet-1K classification before ADE20K segmentation TlayVII-21 M3 1384 Cours) || 80,2, 978 21 14:8 394 oot:  Hybrd
TinyViT-21M™ 1512 (ours) || 86.5 97.9 21 27.0 167 512  Hybrid

fine-tuning.




T e | PRt B BedN oy Contraction factors. We consider the following factors to form a model:
=t |—' ﬁ E R ! — -1, : embeded dimension of four stages respectively. Decreasing them re-
Teacher el gults in a thinner network with fewer heads in multi-head self-attention.
P _ ' — 7w, _,: the number of blocks in four stages respectively. The depth of the
B fii ﬁ %ﬂg éﬁ ! model is decreased by reducing these values.
- mw b —— — window size in the last three stages respectively. As these values

Pkl Bkt Adiive Hiok) T become smaller, the model has fewer parameters and higher throughput.
Figure 3. The default knowledge distillation strategy of TioyMIM. The student (e.g. VIT-B) is optimized to mimic the relatio — YR: Cl]almel expan_sion_ ratio Of the LIBCO]JV blOCk. We can Obtaill a Sn]aller
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can be transferred to various downstream tasks. £ & . . .
— 7.s: expansion ratio of MLP for all transformer blocks. The hidden dimension

Method Pretraining Tokenizer/ Tokenizer/Teacher Classification
i e o NG A () of MLP will be smaller if scaling down this value.
Tiny-size models (ViT-1716) . . . a &
Scraich [44] 200 Cibil — 59 — 7: the dimension of each head in multi-head attention. The number of heads
MAES[M] 1600 g Ll 780 will be increased when scaling it down, bringing lower computation cost
MoCo [*] 1600 EMA INIK 733 T e 2z g _ K O
TmyMlM (Ours) 300 TlnyMlM-ViT-S INIK 75.8 44.0/44.6° Model Top-1 Top-5 || #Params MACs Throughput L Arct
TinyMIM* (Ours) 300 TinyMIM-ViT-S INIK 79.6 45.0¢ oe (%) (%) (M) (G)  (images/s) nput:  Arch.
Small-size models (ViT-5/16) 2 | MoblieViT-S [46] 784 - 6 1.8 2,661 256  Hybrid
Scratch [ 4] 300 Label INIK 799 43.1 & | VITAS-DeiT-A [60] 75.5  92.4 6 1.3 3,504 224  Trans
MAET [ 5] 1600 Pixel INIK 80.6 428 & | GLiT-Tiny [9] 76.3 - 7 1.5 3,262 224  Trans
MoCo [ 5] 1600 EMA INIK 814 439 F | Mobile-Former-214M [14] 76.7 - 9 0.2 3,105 224  Hybrid
DINO [ ] 1600 EMA INIK 81.5 453 Z | CrossViT-9 [10] T - 9 2.0 2,659 224  Trans
CIM[17] 1600 Pixel INIK 816 = —:'; TinyViT-5M (ours) 79.1 948 5.4 1.3 3,060 224 Hybrid
TinyMIM (Ours) 300 TinyMIM-ViT-B INIK 83.0 48.4/48.91 TinyViT-5M™ (ours) 80.7 95.6 5.4 1.3 3.060 224 Hybrid
Base-size models (ViT-B/16) ResNet-18 [2§] 70.3  86.7 12 1.8 8,714 224 CNN
Scratch [ 4] 300 Label INIK 81.2 472 _ | PVT-Tiny [66] 75.1 - 13 1.9 2,791 224 Trans
BeiT ('] 800 DALL-E DALLE250M+IN22K+IN1K 83.2 45.6 g Eesfisggzll[gifl ;‘l’g 94.9 ig ’;’1 iggz ggj }'Iﬁgnad
MAE 1+ 1600 Pixel INIK 83.6 as.1 2 [ LEVIENS [ B : ybrd
SIM ll‘ All 1600 F;\di\ INIK ]3.8 ) — | CoaT-Lite Small [71] 819  95.6 20 4.0 1,138 224 Trans
pplon 7 it TinyViT-11M (ours) 81.5 95.8 11 2.0 2,468 224 Hybrid
(] o 2 M 2
;ﬁLcLl (48] :% Dﬁ'(')l(‘}E D'\LLE'SOTI:‘:?“K“NIK :}3 202 TinyViT-11M2 (ours) 83.2 96.5 11 2.0 2,468 224  Hybrid
SdAE | ) 300 EMA INIK 84.1 48.6 DeiT-S [64] 799  95.0 22 4.6 2,276 224  Trans
data2vec [ 1] 800 EMA INIK 842 . T2T-ViT-14 [74] 815  95.7 21 4.8 1,557 224  Trans
PeCo|!!] 300 VQGAN INIK 84.1 46.7 = | AutoFormer-S [11] 81.7  95.7 23 5.1 1,341 224  Trans
PeCo [ 1] 800 VQGAN INIK 84.5 485 & | Swin-T [43] 812 955 28 4.5 1,393 224  Trans
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Table 3. Fine-tuning results on ImageNet-1K and ADE20K. All models are pre-trained on ImageNet-1K. “Tokenizer/Teacher Data™: training %ﬁyzii;ixf’&f}s) §i§ 3‘33 21 32 {2;} §§i ﬁy ‘;:3
data of teacher and tokenizer. : reproduced result using official code, *: the model is fine-tuned for 1000 epochs with DeiT-style [14] Tinz ViT-21M"'“ 1384 (ours) 86.2 97.8 91 1';8 :’;94 384 H;, beid
knowledge distillation. £: the model adopts an intermediate fine-tuning on ImageNet-1K classification before ADE20K segmentation 5 3 sy : ' o - .
TinyViT-21M™ 1512 (ours) || 86.5 97.9 21 27.0 167 512 Hybrid

fine-tuning.




