Semi-Supervised Semantic Segmentation

background

• Data

Semi-Supervised

Semi-Supervised Segmentation

• Mainstream Methods

features:

- 1. Joint training.
- 2. Exponential Moving Average to update teacher.

features:

- 1. serial training
- 2. multi-stage training procedure
- 3. Intermediate results

Semi-Supervised Segmentation

• Mean-Teacher

Classic CPS:

Features:

- 1. Cross Pseudo-label supervision.
- 2. use CutMix SDA to further boost performance.

representative works: Mean-Teacher [NeurIPS 2017]

CCT_[CVPR 2020] Consistency method CutMix-Seg_[BMCV 2020] CutMix SDA in SSSS GCT_[ECCV 2020]

CPS_[CVPR 2021]

AEL_[NeurIPS 2021]

U2PL_[CVPR 2022]

Semi-Supervised Segmentation

• Self-Training

representative works: Naïve Student [ECCV 2020]

Noisy Student [CVPR 2020]

DSBN [ICCV 2021]

ST++ [CVPR 2022]

research status:

- 1. few attention
- 2. Limited improvement
- 3. Weak performance

Compared with MT kinds.

Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Yuchao Wang^{1*} Haochen Wang^{1*} Yujun Shen² Jingjing Fei³ Wei Li³ Guoqiang Jin³ Liwei Wu³ Rui Zhao³ Xinyi Le¹ ¹Shanghai Jiao Tong University ²The Chinese University of Hong Kong ³SenseTime Research

motivation

Previously works select the highly confident predictions as the pseudo ground-truth. Weakness: most pixels may be left unused due to unreliability.

-> make sufficient use of unlabeled images

Intuition

Person	0.60
Bicycle	0.18
Motorbike	0.14
Car	0.03
Sofa	0.03
Airplane	0.02

- An unreliable prediction may get confused among the top classes, however, it should be confident about the pixel not belonging to the remaining classes.
- Such a pixel can be convincingly treated as a negative sample to those most unlikely categories. -> Contrastive Learning

Figure 3. An overview of our proposed U^2PL method. U^2PL contains a student network and a teacher network, where the teacher is momentum-updated with the student. Labeled data is directly fed into the student network for supervised training. Given an unlabeled image, we first use the teacher model to make a prediction, and then separate the pixels into reliable ones and unreliable ones based on their entropy. Such a process is formulated as Eq. (6). The reliable predictions are directly used as the pseudo-labels to advise the student, while each unreliable prediction is pushed into a category-wise memory bank. Pixels in each memory bank are regarded as the negative samples to the corresponding class, which is formulated as Eq. (4).

DPA -- Dynamic Partition Adjustment

Reliable criterion quantify

$$\mathcal{H}(\mathbf{p}_{ij}) = -\sum_{c=0}^{C-1} p_{ij}(c) \log p_{ij}(c),$$

 $p_{ij} \in \mathbb{R}^{C}$, softmax probabilities generated by the segmentation head of the teacher model for the *i*th unlabeled image at pixel *j*

$$\hat{y}_{ij}^{u} = \begin{cases} \arg\max_{c} p_{ij}(c), & \text{if } \mathcal{H}(\mathbf{p}_{ij}) < \gamma_t, \\ \text{ignore,} & \text{otherwise,} \end{cases}$$

 $\gamma_t \texttt{=} \texttt{np.percentile} (\texttt{H.flatten(),} 100 \star (1 - \alpha_t))$

$$\alpha_t = \alpha_0 \cdot \left(1 - \frac{t}{\text{total epoch}}\right),$$

Anchor, Positive and negative

Anchor pixels (representation) for class c

$$\mathcal{A}_{c}^{l} = \{\mathbf{z}_{ij} \mid y_{ij} = c, p_{ij}(c) > \delta_{p}\},\$$
$$\mathcal{A}_{c}^{u} = \{\mathbf{z}_{ij} \mid \hat{y}_{ij} = c, p_{ij}(c) > \delta_{p}\},\$$
$$\mathcal{A}_{c} = \mathcal{A}_{c}^{l} \cup \mathcal{A}_{c}^{u},\$$
$$\delta_{p} = 0.3$$

Positive samples

PRT -- Probability Rank Threshold

Negative samples

$$n_{ij}(c) = \begin{cases} n_{ij}^l(c), & \text{if image } i \text{ is labeled,} \\ n_{ij}^u(c), & \text{otherwise,} \end{cases}$$

Labeled images: (b) similar to class c.

(a) not belongs to class c; $\mathcal{O}_{ij} = ext{argsort}(\mathbf{p}_{ij})$

 $n_{ij}^{l}(c) = \mathbb{1} [y_{ij} \neq c] \cdot \mathbb{1} [0 \leq \mathcal{O}_{ij}(c) < r_{l}],$

Unlabeled images:

(a) be unreliable;

(b) probably not belongs to class c;

(c) not belongs to most unlikely classes.

$$n_{ij}^{u}(c) = \mathbb{1} \left[\mathcal{H}(\mathbf{p}_{ij}) > \gamma_t \right] \cdot \mathbb{1} \left[r_l \le \mathcal{O}_{ij}(c) < r_h \right]$$
$$\mathcal{N}_c = \left\{ \mathbf{z}_{ij} \mid n_{ij}(c) = 1 \right\}$$

Class 0

Category-wise Memory Bank

Class C-1

Class 1

Experiments

Table 1. Comparison with state-of-the-art methods on *classic* **PASCAL VOC 2012** val set under different partition protocols. The labeled images are selected from the original VOC train set, which consists of 1, 464 samples in total. The fractions denote the percentage of labeled data used for training, followed by the actual number of images. All the images from SBD [18] are regarded as unlabeled data. "SupOnly" stands for supervised training without using any unlabeled data. † means we reproduce the approach.

Method	1/16 (92)	1/8 (183)	1/4 (366)	1/2 (732)	Full (1464)
SupOnly	45.77	54.92	65.88	71.69	72.50
MT [†] [38]	51.72	58.93	63.86	69.51	70.96
CutMix [†] [15]	52.16	63.47	69.46	73.73	76.54
PseudoSeg [50]	57.60	65.50	69.14	72.41	73.23
PC^2Seg [48]	57.00	66.28	69.78	73.05	74.15
U ² PL (w/ CutMix)	67.98 (+15.82)	69.15 (+5.68)	73.66 (+4.20)	76.16 (+2.43)	79.49 (+2.95)

Experiments

Results on Pascal VOC

Table 2. Comparison with state-of-the-art methods on *blender* **PASCAL VOC 2012** val set under different partition protocols. All labeled images are selected from the augmented VOC train set, which consists of 10,582 samples in total. "SupOnly" stands for supervised training without using any unlabeled data. † means we reproduce the approach.

Method	1/16 (662)	1/8 (1323)	1/4 (2646)	1/2 (5291)
SupOnly	67.87	71.55	75.80	77.13
MT [†] [38]	70.51	71.53	73.02	76.58
CutMix [†] [15]	71.66	75.51	77.33	78.21
CCT [33]	71.86	73.68	76.51	77.40
GCT [22]	70.90	73.29	76.66	77.98
CPS [9]	74.48	76.44	77.68	78.64
AEL [21]	77.20	77.57	78.06	80.29
U ² PL (w/ CutMix)	77.21 (+5.55)	79.01 (+3.50)	79.30 (+1.97)	80.50 (+2.29)

Results on Cityscpaes

Table 3. Comparison with state-of-the-art methods on **Cityscapes** val set under different partition protocols. All labeled images are selected from the Cityscapes train set, which consists of 2,975 samples in total. "SupOnly" stands for supervised training without using any unlabeled data. † means we reproduce the approach.

	Method	1/16 (2	186) 1/8 (372)	1/4 (744)	1/2 (1488)
/2 (5291)	SupOnly	65.74	72.53	74.43	77.83
7.13	MT [†] [38]	69.03	72.06	74.20	78.15
6.58	CutMix [†] [15]	67.06	71.83	76.36	78.25
8.21	CCT [33]	69.32	74.12	75.99	78.10
7.40	<u>GCT [22]</u>	66.75	72.66	<u> </u>	78.34
7.98	CPS [†] [9]	69.78	74.31	74.58	76.81
8.64	AEL [†] [21]	74.45	75.55	77.48	79.01
0.29	U^2 PL (w/ CutMix)	70.30	(+3.24) 74.37 (+2)	.54) 76.47 (+0.11)	79.05 (+0.80)
0.50 (+2.29)	U^2PL (w/ AEL)	74.90	(+0.45) 76.48 (+0.	.93) 78.51 (+1.03)	79.12 (+0.11)
Ours (w/o C	CutMix Aug.) 70.50	0	75.71	77.41	80.08
Ours (w/ Cu	ntMix Aug.) 74.7	2	77.62	79.21	80.21
AEL	(Ours) 75.8	3	77.90	79.01	80.28

Ablation Study

Table 6. Ablation study on the effectiveness of various components in our U²PL, including unsupervised loss \mathcal{L}_u , contrastive loss \mathcal{L}_c , category-wise memory bank \mathcal{Q}_c , Dynamic Partition Adjustment (DPA), Probability Rank Threshold (PRT), and high entropy filtering (Unreliable).

\mathcal{L}_{c}	\mathcal{Q}_c	DPA	PRT	Unreliable	1/4 (2646)
					73.02
\checkmark					77.08
\checkmark	\checkmark		\checkmark	\checkmark	78.49
\checkmark	\checkmark	\checkmark		\checkmark	79.07
\checkmark	\checkmark	\checkmark	\checkmark		77.57
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	79.30

Ablation Study

Table 4. Ablation study on using pseudo pixels with different reliability, which is measured by the entropy of pixel-wise prediction (see Sec. 3.3). "Unreliable" denotes selecting negative candidates from pixels with top 20% highest entropy scores. "Reliable" denotes the bottom 20% counterpart. "All" denotes sampling regardless of entropy.

	Unreliable	Reliable	All
1/8 (1323)	79.01	77.30	77.40
1/4 (2646)	79.30	77.35	77.57

Table 5. Ablation study on the probability rank threshold, which is described in Sec. 3.3.

r_l	r_h	1/8 (1323)	1/4 (2646)
1	3	78.57	79.03
1	20	78.64	79.07
3	10	78.27	78.91
3	20	79.01	79.30
10	20	78.62	78.94

Table 7. Ablation study on α_0 in Eq. (7), which controls the initial proportion between reliable and unreliable pixels.

$lpha_0$	40%	30%	20%	10%
1/8 (1323)	76.77	77.34	79.01	77.80
1/4 (2646)	76.92	77.38	79.30	77.95

Analysis

Feature space visualization

ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

Lihe Yang¹ Wei Zhuo³ Lei Qi^{4,1} Yinghuan Shi^{1,2*} Yang Gao¹ ¹State Key Laboratory for Novel Software Technology, Nanjing University ²National Institute of Healthcare Data Science, Nanjing University ³Tencent ⁴Southeast University

ST++

motivation

1. construct a strong baseline of self-training via injecting strong data augmentations (SDA) on unlabeled images.

alleviate overfitting noisy labels,

decouple similar predictions between the teacher and student

2. [Novelty] selective re-training via prioritizing reliable unlabeled images. incorrect pseudo labels are prone to accumulate and degrade the performance.

ST++

Algorithm 1: ST Pseudocode **Input:** Labeled training set $\mathcal{D}^l = \{(x_i, y_i)\}_{i=1}^M$, Unlabeled training set $\mathcal{D}^u = \{u_i\}_{i=1}^N$, Weak/strong augmentations $\mathcal{A}^w/\mathcal{A}^s$, Teacher/student model T/S**Output:** Fully trained student model S Train T on \mathcal{D}^l with cross-entropy loss \mathcal{L}_{ce} Obtain pseudo labeled $\hat{\mathcal{D}}^u = \{(u_i, T(u_i))\}_{i=1}^N$ Over-sample \mathcal{D}^l to around the size of $\hat{\mathcal{D}}^u$ for minibatch $\{(x_k, y_k)\}_{k=1}^B \subset (\mathcal{D}^l \cup \hat{\mathcal{D}}^u)$ do for $k \in \{1, ..., B\}$ do if $x_k \in \mathcal{D}^u$ then $x_k, y_k \leftarrow \mathcal{A}^s(\mathcal{A}^w((x_k, y_k)))$ else $x_k, y_k \leftarrow \mathcal{A}^w(x_k, y_k)$ $\hat{y}_k = S(x_k)$ Update S to minimize \mathcal{L}_{ce} of $\{(\hat{y}_k, y_k)\}_{k=1}^B$ return S

Algorithm 2: ST++ Pseudocode **Input:** Same as Algorithm 1 **Output:** Same as Algorithm 1 Train T on \mathcal{D}^l and save K checkpoints $\{T_i\}_{i=1}^K$ for $u_i \in \mathcal{D}^u$ do for $T_i \in \{T_i\}_{i=1}^K$ do Pseudo mask $M_{ij} = T_j(u_i)$ Compute s_i with Equation 4 and $\{M_{ij}\}_{j=1}^K$ Select R highest scored images to compose \mathcal{D}^{u_1} $\mathcal{D}^{u_2} = \mathcal{D}^u - \mathcal{D}^{u_1}$ $\mathcal{D}^{u_1} = \{(u_k, T(u_k))\}_{u_k \in \mathcal{D}^{u_1}}$ Train S on $(\mathcal{D}^l \cup \mathcal{D}^{u_1})$ with ST re-training $\mathcal{D}^{u_2} = \{(u_k, S(u_k))\}_{u_k \in \mathcal{D}^{u_2}}$ Re-initialize STrain S on $(\mathcal{D}^l \cup \mathcal{D}^{u_1} \cup \mathcal{D}^{u_2})$ with ST re-training return S

Select and Prioritize Reliable Images

Observation:

positive correlation between the segmentation performance and the evolving stability of produced pseudo masks during the supervised training phase.

How to evaluate stability of pseudo masks?

Unlabeled image u_i , K checkpoints $\{T_j\}_{j=1}^K$ saved during training, Predict pseudo masks $\{M_{ij}\}_{j=1}^K$

$$s_i = \sum_{j=1}^{K-1} \operatorname{meanIOU}\left(M_{ij}, M_{iK}\right)$$

Experiments

Network	Method	1/16 (662)	1/8 (1323)	1/4 (2645)	Network	Method	1/16 (662)	1/8 (1323)	1/4 (2645)
PSPNet ResNet-50	SupOnly CCT [41] DCC [31] ST	63.8 62.2 67.1 69.1	67.2 68.8 71.3 73.0	69.6 71.2 72.5 73.2	DeepLabv3+ ResNet-50	SupOnly ECS [37] DCC [31] ST	64.8 - 70.1 71.6	68.3 70.2 72.4 73.3	70.5 72.6 74.0 75.0
	ST++	69.9	73.2	73.4		ST++	72.6	74.4	75.4
DeepLabv2 ResNet-101	SupOnly AdvSSL [26] S4L [57] GCT [28] ST ST++	64.3 62.6 61.8 65.2 68.6 69.3	67.6 68.4 67.2 70.6 71.6 72.0	69.5 69.9 68.4 71.5 72.5 72.8	DeepLabv3+ ResNet-101	SupOnly S4GAN [38] GCT [28] DCC [31] ST ST++	66.3 69.1 67.2 72.4 72.9 74.5	70.6 72.4 72.5 74.6 75.7 76.3	73.1 74.5 75.1 76.3 76.4 76.6

Results on Pascal VOC val set

Experiments

Results on cityscapes val set

Method	1/30 (100)	1/8 (372)	1/4 (744)					
DeepLabv3+, ResNet-101								
DMT [17]	54.8	63.0	-					
CutMix-Seg [18]	55.7	65.8	68.3					
ClassMix [40]	-	61.4	63.6					
PseudoSeg [66]	61.0	69.8	72.4					
Dee	epLabv3+, Re	sNet-50						
SupOnly	55.1	65.8	68.4					
DCC [31]	-	69.7	72.7					
ST	60.9	71.6	73.4					
ST++	61.4	72.7	73.8					

Method	# La	# Labeled images (Total: 10582)				
	92	183	366	732	1464	
SupOnly	50.7	59.1	65.0	70.6	74.1	
GCT [28]	46.0	55.0	64.7	70.7	-	
CutMix-Seg [18]	55.6	63.2	68.4	69.8	-	
PseudoSeg [66]	57.6	65.5	69.1	72.4	73.2	
CPS [12]	64.1	67.4	71.7	75.9	-	
PC^2Seg [61]	57.0	66.3	69.8	73.1	74.2	
ST	61.3	68.2	73.5	76.3	78.9	
ST++	65.2	71.0	74.6	77.3	79.1	
Fully-supervised setting (10582 images): 78.2						

Results on Pascal VOC val set

Data Augmentation Strategies

Effectiveness of SDA

Apply SDA on		1/16	1/8	1/4
labeled data	unlabeled data	(662)	(1323)	(2645)
		70.9	71.4	73.5
\checkmark	\checkmark	71.0	73.0	74.3
	\checkmark	71.6	73.3	75.0

Table 5. Effectiveness of full SDA. The first line without applying SDA is the plainest self-training [33]. The best results of only applying SDA on unlabeled data indicates that a more challenging optimization target for unlabeled data is vital to the success. And SDA on labeled data may destroy the clean data distribution.

Reliable Effectiveness

Reliable selection improve pseudo mask quality.

Need compare with retraining with all unlabeled data.

Figure 3. Pseudo mask quality of the reliable and unreliable images selected by ST++. The *Boosted* means the improved mIOU when re-labeling the unreliable images with the model trained on reliable images compared with only trained with labeled images.

Ablation Study

Ablation on different re-training methods

Method	1/16	1/8	1/4
	(662)	(1323)	(2645)
One-stage re-training (our ST)	71.6	73.3	75.0
Random two-stage re-training	71.3	73.9	74.7
Selective re-training (our ST++)	72.6	74.4	75.4

Table 6. Effectiveness of the selective re-training in ST++. ST++ does not benefit from random two-stage re-training process, but the progressive reliable-to-unreliable selective re-training pipeline.

Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

Yuyuan Liu¹ Yu Tian¹ Yuanhong Chen¹ Fengbei Liu¹ Vasileios Belagiannis² Gustavo Carneiro¹ ¹ Australian Institute for Machine Learning, University of Adelaide ² Universität Ulm, Germany

UCC: Uncertainty guided Cross-head Co-training for Semi-Supervised Semantic Segmentation

Jiashuo Fan¹ Bin Gao² Huan Jin² Lihui Jiang^{2*} ¹Tsinghua-Berkeley Shenzhen Institute, Tsinghua University ²Huawei Noah's Ark Lab

