Semi-supervised Semantic Segmentation with Directional Context-aware Consistency

Xin Lai^{1*} Zhuotao Tian^{1*} Li Jiang¹ Shu Liu²
Hengshuang Zhao³ Liwei Wang¹ Jiaya Jia^{1,2}

¹The Chinese University of Hong Kong ²SmartMore ³University of Oxford

{xinlai,zttian,lijiang,lwwang,leojia}@cse.cuhk.edu.hk sliu@smartmore.com hengshuang.zhao@eng.ox.ac.uk

semi-supervised

Semi-supervised learning aims to exploit unlabel data to futher improve the representation learning given limited labeled data.

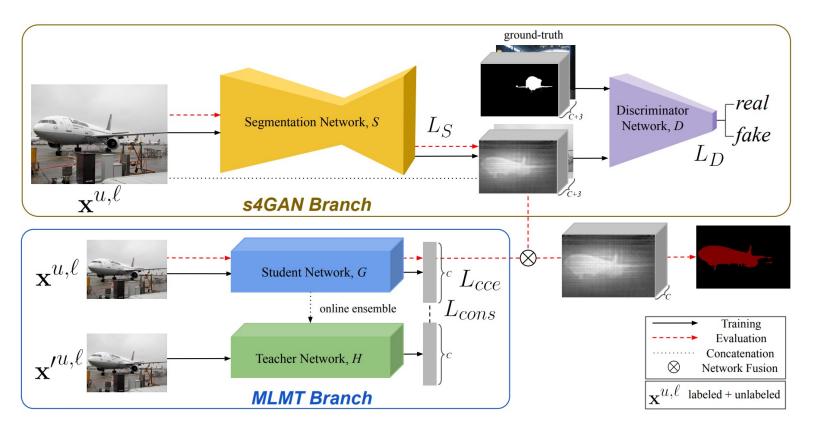
labeled data: pixel level annotation

unlabeled data: data without any annotation

weakly labeled data: bounding box, image-level labels, scribbles

Semi-supervised semantic segmentation

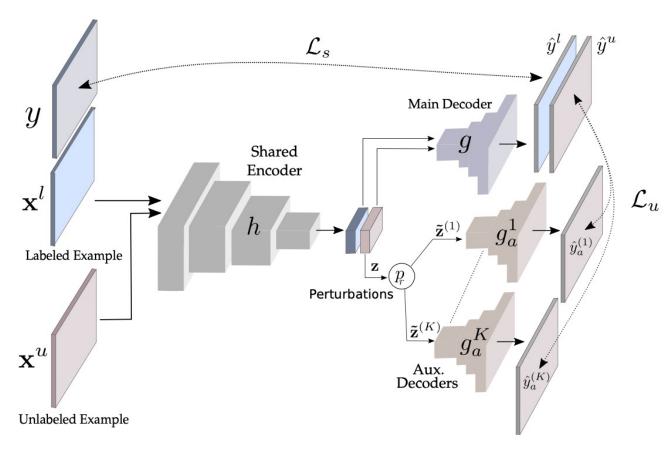
adversarial learning



Semi-supervised semantic segmentation with high- and low-level consistency. TPAMI, 2019.

Semi-supervised semantic segmentation

consistency training



Semi- supervised semantic segmentation with cross-consistency training. In CVPR, 2020

motivation

Prior **consistency-base** methods simply apply low-level data augmentations and constrain the perturbed ones to be consistent. However, model could not produce consistent embedding distribution under **different contexts**.

Consistency with **contextual augmentation** cloud be an additional constraint supplying low-level augmentations.

contribution

To alleviate the overfitting problem, we propose to maintain *context-aware consistency* between pixels under different environments.

To accomplish contextual alignment, we design the *Directional Contrastive Loss*, what applies the constrastive learning in a pixel-wise manner. Also, two effective **sampling strategies** are proposed to further improve performance.

visualize

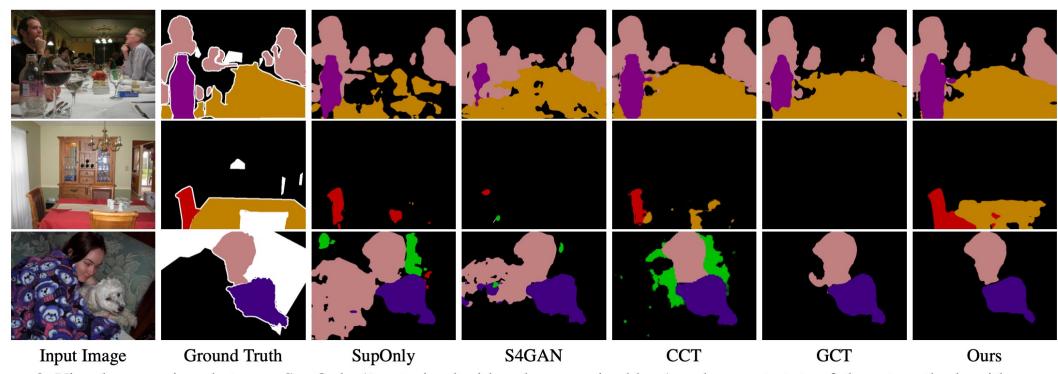


Figure 8. Visual comparison between SupOnly (i.e., trained with only supervised loss) and current state-of-the-art methods with ours.

Overview

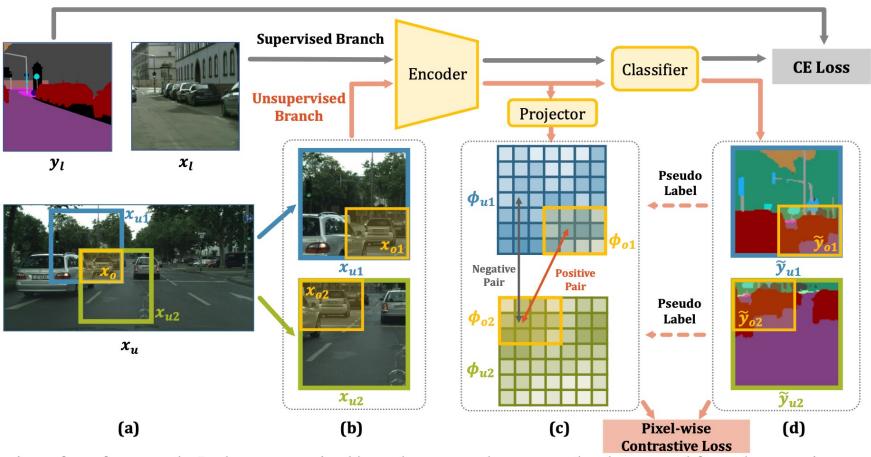
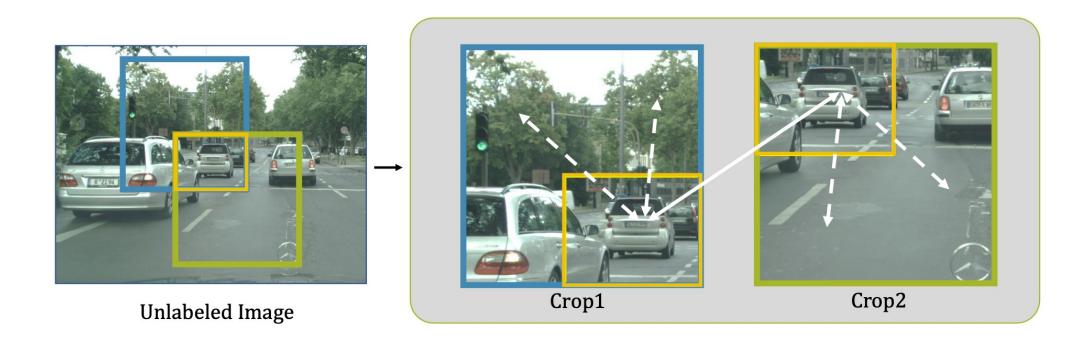


Figure 4. Overview of our framework. In the unsupervised branch, two patches are randomly cropped from the same image with a partially overlapping region. We aim to maintain a pixel-to-pixel consistency between the feature maps corresponding to the overlapping region.

context-aware consistency



Make the representations more robust to the changing environments.

Directional contrastive loss

base loss

$$l_{dc}^b(\phi_{o1},\phi_{o2}) =$$

$$-\frac{1}{N} \sum_{h,w} \mathcal{M}_{d}^{h,w} \cdot \log \frac{r(\phi_{o1}^{h,w}, \phi_{o2}^{h,w})}{r(\phi_{o1}^{h,w}, \phi_{o2}^{h,w}) + \sum_{\phi_{n} \in \mathcal{F}_{u}} r(\phi_{o1}^{h,w}, \phi_{n})} \qquad (1)$$

$$\mathcal{M}_{d}^{h,w} = \mathbf{1} \{ \max \mathcal{C}(f_{o1}^{h,w}) < \max \mathcal{C}(f_{o2}^{h,w}) \}$$

$$\mathcal{M}_d^{h,w} = \mathbf{1}\{\max \mathcal{C}(f_{o1}^{h,w}) < \max \mathcal{C}(f_{o2}^{h,w})\}$$
 (2)

$$\mathcal{L}_{dc}^{b} = l_{dc}^{b}(\phi_{o1}, \phi_{o2}) + l_{dc}^{b}(\phi_{o2}, \phi_{o1})$$
(3)

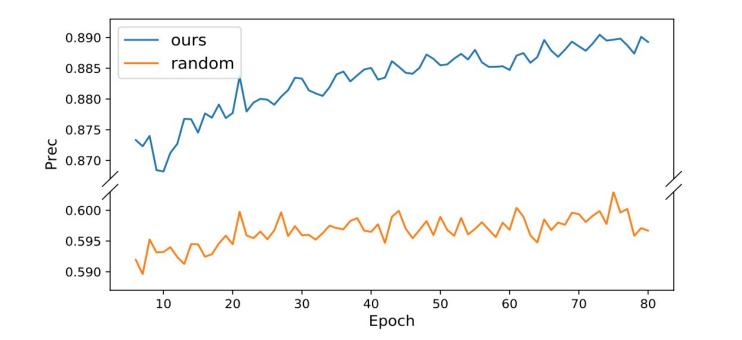
$$r(\phi_1, \phi_2) = \exp(s(\phi_1, \phi_2)/\tau)$$

 $l_{dc}^{b}(\phi_{o1},\phi_{o2})$ only back propogate to $\phi_{o1}^{h,w}$

negative sampling -- filter out false negative samples

$$l_{dc}^{b,ns}(\phi_{o1},\phi_{o2}) = \frac{r(\phi_{o1}^{h,w},\phi_{o2}^{h,w})}{-\frac{1}{N}\sum_{h,w}\mathcal{M}_{d}^{h,w} \cdot \log \frac{r(\phi_{o1}^{h,w},\phi_{o2}^{h,w})}{r(\phi_{o1}^{h,w},\phi_{o2}^{h,w}) + \sum_{\phi_{n}\in\mathcal{F}_{u}}\mathcal{M}_{n,1}^{h,w} \cdot r(\phi_{o1}^{h,w},\phi_{n})}}$$

$$\mathcal{M}_{n,1}^{h,w} = \mathbf{1}\{\tilde{y}_{o1}^{h,w} \neq \tilde{y}_{n}\}$$
(5)



positive filtering -- filter out low low confidence positive samples

$$l_{dc}^{b,ns,pf}(\phi_{o1},\phi_{o2}) = -\frac{1}{N} \sum_{h,w} \mathcal{M}_{d,pf}^{h,w} \cdot \log \frac{r(\phi_{o1}^{h,w},\phi_{o2}^{h,w})}{r(\phi_{o1}^{h,w},\phi_{o2}^{h,w}) + \sum_{\phi_{n} \in \mathcal{F}_{u}} \mathcal{M}_{n,1}^{h,w} \cdot r(\phi_{o1}^{h,w},\phi_{n})}$$

$$\mathcal{M}_{d,pf}^{h,w} = \mathcal{M}_{d}^{h,w} \cdot \mathbf{1} \{ \max \mathcal{C}(f_{o2}^{h,w}) > \gamma \}$$
(6)

 γ threshold to filter positive samples with low confidence, 0.75 in experiments

total loss

supervised only:

$$\mathcal{L} = \mathcal{L}_{ce} + \lambda \mathcal{L}_{dc}^{ns,pf}$$

$$\mathcal{L}_{dc}^{ns,pf} = \frac{1}{B} \sum_{b=1}^{B} (l_{dc}^{b,ns,pf}(\phi_{o1},\phi_{o2}) + l_{dc}^{b,ns,pf}(\phi_{o2},\phi_{o1}))$$

 λ balance weigth for unsupervised loss, 30 in experiment

unspervised experiments

Method	SegNet	Backbone	1/16	1/8	1/4	Full
SupOnly	PSPNet	ResNet50	57.4	65.0	68.3	75.1
CCT [41]	PSPNet	ResNet50	62.2	68.8	71.2	75.3
Ours	PSPNet	ResNet50	67.1	71.3	72.5	76.4
SupOnly	DeepLabv3+	ResNet50	63.9	68.3	71.2	76.3
ECS [37]	DeepLabv3+	ResNet50	-	70.2	72.6	76.3
Ours	DeepLabv3+	ResNet50	70.1	72.4	74.0	76.5
SupOnly	DeepLabv3+ DeepLabv3+ DeepLabv3+ DeepLabv3+	ResNet101	66.4	71.0	73.5	77.7
S4GAN [38]		ResNet101	69.1	72.4	74.5	77.3
GCT [25]		ResNet101	67.2	72.5	75.1	77.5
Ours		ResNet101	72.4	74.6	76.3	78.2

Methods	1/8	1/4	Full
SupOnly	66.0	70.7	77.7 77.5
Ours	69.7	72.7	

pascal voc

cityscapes

SupOnly: Only with supervised loss

ECS: Semi-supervised segmentation based on error-correcting supervision. In ECCV, 2020

ablation experiments

ID	Proj	Context	CL	Dir	NS	PF	mIoU
SupOnly							64.7
ST							66.3
I	✓	\checkmark	2002				64.2
II	✓	\checkmark	\checkmark				56.4
III	✓	\checkmark	\checkmark	\checkmark			64.8
IV	✓	\checkmark	\checkmark	\checkmark	\checkmark		71.6
V	✓	\checkmark	\checkmark		\checkmark	\checkmark	71.2
VI	✓		\checkmark	\checkmark	\checkmark	\checkmark	70.5
VII		\checkmark	\checkmark	\checkmark	\checkmark	✓	61.5
VIII	✓	\checkmark	√	√	√	✓	72.4

Table 3. Ablation Study. Exp.I uses ℓ_2 loss to align positive feature pairs. ST: Self-Training. Proj: Non-linear Projector Φ . Context: Context-aware Consistency. CL: Vanilla Contrastive Loss. Dir: Directional Mask $\mathcal{M}_d^{h,w}$ defined in Eq. (2). NS: Negative Sampling. PF: Positive Filtering.

weakly experiment

Methods	Backbone	Semi	Weakly
WSSN [42]	VGG-16	-	64.6
GAIN [33]	VGG-16	-	60.5
MDC [56]	VGG-16	-	65.7
DSRG [22]	VGG-16	-	64.3
Souly <i>et al.</i> [49]	VGG-16	64.1	65.8
FickleNet [31]	ResNet-101	-	65.8
CCT [41]	ResNet-50	69.4	73.2
Ours	VGG-16	68.7	69.3
CCT^{\ddagger}	ResNet-50	72.8	74.6
Ours	ResNet-50	74. 5	76.1

Table 5. Results with extra image-level annotations. CCT[‡]: Reproduced with the same setting as ours. Semi: Semi-supervised setting. Weakly: the setting with extra image-level labels.

experiment settings
dataset: Pascal Voc
1464 pixel level
9118 image level(from SBD)

implement: extra classifier Cw for weakly data

loss:

$$\mathcal{L} = \mathcal{L}_{ce} + \lambda \mathcal{L}_{dc}^{ns,pf} + \lambda_w \mathcal{L}_w \tag{10}$$

$$\mathcal{L}_w = \frac{1}{2} \cdot (CE(\mathcal{C}_w(f_{u1}), y_p) + CE(\mathcal{C}_w(f_{u2}), y_p)) \tag{11}$$