Class-incremental Learning in CVPR'22

Gengwei Zhang University of Technology Sydney

Background

Continual Learning / Incremental Learning / Life-long Learning

- Training sets are provided sequentially: $X_1, X_2, ..., X_t, ...,$ each training set is typically called a task
- Model can only access to one training set X at step t (a few memory samples from previous tasks are acceptable), while being evaluated on test set of all tasks.

-> requires model to maintain performance on old tasks when learning on new tasks

Background

Class-incremental Learning

- Each training set corresponds to a label set Y_t , Y_t are incrementally increasing
- Typically, $Y_i \cap Y_j = \emptyset$ for any $i \neq j$
- Test set contains $Y = Y_1 \cup Y_2 \cup \cdots Y_t \cup \cdots$

Background

Three typical scenario of class-incremental learning

- Training from scratch
 -> DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
- Training with a large initial phase
 -> Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning
- Training with no sample memory available
 Self-Sustaining Representation Expansion for Non-Exemplar Class-Incremental Learning

DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion

Arthur Douillard^{1,2}, Alexandre Ramé¹, Guillaume Couairon^{1,3}, Matthieu Cord^{1,4} ¹Sorbonne Université, ²Heuritech, ³Meta AI, ⁴valeo.ai

arthur.douillard@heuritech.com, {alexandre.rame, matthieu.cord}@sorbonne-universite.fr, gcouairon@fb.com

DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion

Dynamic task token expansion

• For each task, learn a task token θ_t , the task token is first concatenate with the feature tokens

$$z_i = [\boldsymbol{\theta}_i, x_L] \in \mathbb{R}^{(\mathbb{N}+1) \times \mathbb{D}}$$

• Obtain task-specific feature via task-attention (cross attention):

$$\begin{aligned} Q_i &= W_q \boldsymbol{\theta}_i \,, \\ K_i &= W_k z_i \,, \\ V_i &= W_v z_i \,, \\ A_i &= \operatorname{Softmax} \left(Q_i \cdot K_i^T / \sqrt{d/h} \right) \,, \\ O_i &= W_o A_i V_i + b_o \, \in \mathbb{R}^{1 \times \mathbb{D}} \,, \end{aligned}$$

• After obtain task-specific embeddings $E = \{e_1, e_2, ..., e_t\}$, classification score for each task is obtained by

 $\hat{y}_i = \operatorname{Clf}_i(e_i) = \sigma(W_i \operatorname{Norm}_i e_i + b_i),$

DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion

Others:

• Objectives

$$\mathcal{L} = (1 - \alpha)\mathcal{L}_{clf} + \alpha \mathcal{L}_{kd} + \lambda \mathcal{L}_{div}$$

- Classification scores are obtained separately

 requires classification scores to be well calibrated
 BCE rather than CE
 - -> post-hoc fine-tuning

Results

		ImageNet100 10 steps				ImageNet1000 10 steps					
	# P	toj	top-1		p-5	#P to		p-1		top-5	
Methods	//-	Avg	Last	Avg	Last	//~	Avg	Last	Avg	Last	
ResNet18 joint	11.22	-	-	-	95.10	11.68	-	-	-	89.27	
Transf. joint	11.00	-	79.12	-	93.48	11.35	-	73.58	-	90.60	
E2E [5]	11.22	-	-	89.92	80.29	11.68	-	-	72.09	52.29	
Simple-DER [48]	-	-	-	-	-	28.00	66.63	59.24	85.62	80.76	
iCaRL [59]	11.22	-	-	83.60	63.80	11.68	38.40	22.70	63.70	44.00	
BiC [32]	11.22	-	-	90.60	84.40	11.68	-	-	84.00	73.20	
WA [80]	11.22	-	-	91.00	84.10	11.68	65.67	55.60	86.60	81.10	
RPSNet [56]		-	-	87.90	74.00	-	-	-	-	-	
DER w/o P [75]	112.27	77.18	66.70	93.23	87.52	116.89	68.84	60.16	88.17	82.86	
DER [†] [75]	-	76.12	66.06	92.79	88.38	-	66.73	58.62	87.08	81.89	
DyTox	11.01	77.15	69.10	92.04	87.98	11.36	71.29	63.34	88.59	84.49	

DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion

Ablations

		Nedge Die	tillation	EXPansi	on Ore	ssifier Classifier	j ⁵
	And	Fille	LOR	Dix	mar	Avg	Last
ner						60.69	38.87
sforı	 ✓ 					61.62	39.35
OX Tran	 ✓ 	✓				63.42	42.21
Jy1 iic	1	✓	\checkmark			67.30	47.57
I nam		\checkmark	\checkmark	\checkmark		68.28	49.45
Dy		\checkmark	\checkmark	\checkmark	\checkmark	70.20	52.34

DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion

Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning

Yujun Shi¹ * Kuangqi Zhou¹ Jian Liang³ Zihang Jiang¹ Jiashi Feng² Philip Torr⁴ Song Bai² Vincent Y. F. Tan¹ ¹National University of Singapore ² ByteDance Inc. ³ Institute of Automation, Chinese Academy of Sciences (CAS) ⁴ University of Oxford shi.yujun@u.nus.edu vtan@nus.edu.sg

Quantitative Analysis

First obtain feature covariance matrix of class *c*

$$K^{(c)} = \frac{1}{n-1} \sum_{i=1}^{n} (Z_i^{(c)} - \bar{Z}^{(c)}) (Z_i^{(c)} - \bar{Z}^{(c)})^{\top}$$

Then obtain the eigen value λ , and calculate

$$\alpha_{k}^{(c)} := \frac{\sum_{i=1}^{k} \lambda_{i}^{(c)}}{\sum_{i=1}^{d} \lambda_{i}^{(c)}} \in [0, 1]$$

 α represents the importance of the top-k feature dimensions

If α_k^c is close to 1 even when k is small, then the top eigenvalues dominate.

Class-wise Decorrelation (CwD) objective

Make eigen value distribute uniformly by minimizing:

$$L_{
m shape}^{(c)} = rac{1}{d} \sum_{i=1}^{d} igg(\lambda_i^{(c)} - rac{1}{d} \sum_{j=1}^{d} \lambda_j^{(c)} igg)^2,$$

It can be approve that

$$\sum_{i=1}^{d} \left(\lambda_i - \frac{1}{d} \sum_{j=1}^{d} \lambda_j \right)^2 = \|K\|_{\rm F}^2 - d$$

Therefore, we have

$$L_{\rm CwD}(\theta) = \frac{1}{C \cdot d^2} \sum_{c=1}^{C} \|K^{(c)}\|_{\rm F}^2,$$

Effect

Results

Method	CIFAR100 (B=50)			Imag	eNet100 (E	ImageNet (B=100)		
	S=10	5	2	10	5	2	100	50
LwF [18]	$53.59{\scriptstyle\pm0.51}$	48.66±0.58	45.56±0.28	53.62 [†]	47.64 [†]	44.32 [†]	40.86±0.13	27.72 ± 0.12
iCaRL [26]	$60.82{\scriptstyle\pm0.03}$	$53.74{\scriptstyle\pm0.25}$	$47.86{\scriptstyle \pm 0.41}$	65.44^{\dagger}	59.88 [†]	52.97 [†]	$49.56{\scriptstyle \pm 0.09}$	$42.61{\scriptstyle\pm0.15}$
BiC [33]	$51.58{\scriptstyle\pm0.16}$	$48.07{\scriptstyle\pm0.02}$	43.10±0.37	70.07^{\dagger}	64.96†	57.73 [†]	$43.23{\scriptstyle\pm0.13}$	$38.83{\scriptstyle\pm0.12}$
LUCIR [12]	$66.27{\scriptstyle\pm0.28}$	60.80±0.29	52.96±0.25	70.60±0.43	67.76±0.40	$62.76{\scriptstyle\pm0.22}$	56.40 ± 0.10	52.75±0.18
+CwD (ours)	$67.26{\scriptstyle \pm 0.16}$	$62.89{\scriptstyle\pm0.09}$	56.81±0.21	$71.94{\scriptstyle\pm0.11}$	$69.34{\scriptstyle\pm0.31}$	65.10±0.59	57.42 ± 0.11	$53.37{\scriptstyle\pm0.22}$
PODNet [8]	66.98±0.13	63.76±0.48	61.00±0.18	75.71±0.37	72.80±0.35	$65.57{\scriptstyle\pm0.41}$	$57.01{\scriptstyle\pm0.12}$	54.06±0.09
+CwD (ours)	$67.44{\scriptstyle\pm0.35}$	$64.64{\scriptstyle\pm0.38}$	$62.24{\scriptstyle\pm0.32}$	$76.91{\scriptstyle\pm0.10}$	$74.34{\scriptstyle\pm0.02}$	$67.42{\scriptstyle \pm 0.07}$	$58.18{\scriptstyle\pm0.20}$	$56.01{\scriptstyle\pm0.14}$
AANet [19]	$69.79{\scriptstyle\pm0.21}$	$67.97{\scriptstyle\pm0.26}$	$64.92{\scriptstyle\pm0.30}$	$71.96{\scriptstyle\pm0.12}$	$70.05{\scriptstyle\pm0.63}$	$67.28{\scriptstyle\pm0.34}$	$51.76^{*}{\scriptstyle\pm0.14}$	46.86*±0.13
+CwD (ours)	$70.30{\scriptstyle \pm 0.37}$	$68.62{\scriptstyle\pm0.17}$	$66.17{\scriptstyle\pm0.13}$	$72.92{\scriptstyle\pm0.29}$	71.10 ± 0.16	$68.18{\scriptstyle\pm0.27}$	$52.30^*{\scriptstyle\pm0.08}$	$47.61^*{\scriptstyle\pm0.20}$

Ablations

S	B	LUCIR	+CwD (ours)	1
	10	$57.01{\scriptstyle \pm 0.14}$	57.90 ± 0.07	+0.89
	20	$61.21{\scriptstyle\pm0.35}$	$62.49{\scriptstyle\pm0.36}$	+1.28
10	30	$64.82{\scriptstyle\pm0.38}$	66.54 ± 0.35	+1.72
	40	$67.68{\scriptstyle\pm0.37}$	69.70 ± 0.10	+2.02
	50	$70.60{\scriptstyle \pm 0.43}$	$71.94{\scriptstyle\pm0.11}$	+1.33
	10	50.47±0.31	51.92±0.10	+1.45
5	20	$56.41{\scriptstyle\pm0.37}$	$58.14{\scriptstyle\pm0.13}$	+1.73
	30	61.00±0.09	$63.18{\scriptstyle \pm 0.14}$	+2.18
	40	$63.73{\scriptstyle\pm0.23}$	$66.25{\scriptstyle \pm 0.16}$	+2.52
	50	$67.76{\scriptstyle \pm 0.40}$	$69.34{\scriptstyle\pm0.31}$	+1.58

Self-Sustaining Representation Expansion for Non-Exemplar Class-Incremental Learning

Kai Zhu¹ Wei Zhai¹ Yang Cao^{1,3,†} Jiebo Luo² Zheng-Jun Zha¹ ¹ University of Science and Technology of China ² University of Rochester ³ Institute of Artificial Intelligence, Hefei Comprehensive National Science Center {zkzy@mail., wzhai056@mail., forrest@}ustc.edu.cn jluo@cs.rochester.edu zhazj@ustc.edu.cn DSR

Self-Sustaining Representation Expansion for Non-Exemplar Class-Incremental Learning

Details

Self-Sustaining Representation Expansion for Non-Exemplar Class-Incremental Learning

Results

Methods		CIFAR-100			TinyImageNet			ImageNet-Subset
		<i>P=5</i>	<i>P=10</i>	<i>P=20</i>	<i>P=5</i>	P=10	<i>P=20</i>	P=10
50	iCaRL-CNN*	51.07	48.66	44.43	34.64	31.15	27.90	50.53
	iCaRL-NCM* [25]	58.56	54.19	50.51	45.86	43.29	38.04	60.79
I (I	EEIL* [1]	60.37	56.05	52.34	47.12	45.01	40.50	63.34
2	UCIR* [10]	63.78	62.39	59.07	49.15	48.52	42.83	66.16
	EWC* [14]	24.48	21.20	15.89	18.80	15.77	12.39	20.40
0	LwF_MC* [25]	45.93	27.43	20.07	29.12	23.10	17.43	31.18
E=	MUC* [34]	49.42	30.19	21.27	32.58	26.61	21.95	35.07
(2)	SDC [35]	56.77	57.00	58.90	-	-	-	61.12
	PASS [37]	63.47	61.84	58.09	49.55	47.29	42.07	61.80
	Ours	65.88+2.41	65.04+3.20	61.70+2.80	50.39+0.84	48.93+1.64	48.17+6.10	67.69+5.89

Ablations

DSB	MBD	DSM		CIFAR-100	
DSK	DOK MDD		5 phases	10 phases	20 phases
			61.11	57.08	51.04
\checkmark			64.86	63.25	54.09
	\checkmark		62.70	62.60	58.57
\checkmark	\checkmark		65.10	63.87	60.60
\checkmark	\checkmark	\checkmark	65.88	64.69	61.61

	CIFAR-100					
Method	5 phases	10 phases	20 phases			
3×3 conv	64.28	63.47	60.81			
$1 \times 1 \text{ conv} + bn$	65.88	64.84	60.72			
1×1 conv	65.87	65.12	61.60			

Self-Sustaining Representation Expansion for Non-Exemplar Class-Incremental Learning

How to handle the compatibility between different tasks?

-> using task-specific design (DyTox, DSR)

-> increase the compatibility of previous representation (CwD)

-> selective optimization (DSR)