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Deep Extreme Cut: From Extreme Points to Object
Segmentation

Figure |. Example results of DEXTR: The user provides the extreme clicks for an object, and the CNN produces the segmented masks.

 This paper use of extreme points in an object (left-most, right-most, top, bottom pixels) as
input to obtain precise object segmentation for images and videos.
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Figure 2. Architecture of DEXTR: Both the RGB image and the labeled extreme points are processed by the CNN to produce the
segmented mask. The applicability of this method is illustrated for various tasks: Instance, Semantic, Video. and Interactive segmentation.

1. Input: a 4-channel input (RGB+ heatmap). We center a 2D Gaussian around each of the
points, in order to create a single heatmap. The input is cropped by the bounding box,
formed from the extreme point annotations.
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Figure 2. Architecture of DEXTR: Both the RGB image and the labeled extreme points are processed by the CNN to produce the
segmented mask. The applicability of this method is illustrated for various tasks: Instance, Semantic, Video, and Interactive segmentation.
1. Input: a 4-channel input (RGB+ heatmap).

« 2. Network: Deeplab-v2 model. choose ResNet-101 as the backbone of our architecture.
remove the fully connected layers as well as the max pooling layers in the last two stages.
user pyramid scene parsing (PSP) module instead of Atrous spatial pyramid (ASPP).

e 3. Loss:
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Figure 2. Architecture of DEXTR: Both the RGB image and the labeled extreme points are processed by the CNN to produce the
segmented mask. The applicability of this method is illustrated for various tasks: Instance, Semantic, Video. and Interactive segmentation.

1. Input: a 4-channel input (RGB+ heatmap).

2. Network: Deeplab-v2 model.
3. Loss: class-balanced cross entropy loss , where the loss for each class in the batch is

weighted by its inverse frequency.



Interactive Image Segmentation with Latent Diversity

* When the user clicks on a door, do they intend to select the door or the whole house?
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 Thefirstis trained to synthesize a diverse set of plausible segmentations that conform to the
user’s input.

 The second is trained to select among these.
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 |nput: The total number of channels in the input is 1,477 (the image X, clicks Sp and Sn,
distance maps, feature map )

 feature maps : Use VGG-19 network pretrained on the ImageNet to extract the feature
maps from the following layers: ‘convl 2’, ‘conv2 2’, ‘conv3 2’, ‘conv4 2’, and ‘conv5 2’

 clicks & distance maps:

T,(p) = min |p—
»(P) Iin lp —ql|2
T.(p) = min ||p—qls.
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 The output layer has M channels, one for each synthesized segmentation mask.
The final nonlinearity is a sigmoid that maps each pixel to the range [0, 1].

. LosS:

Li(Of) = Zmﬂin VY3, fm (X5 65))

+ (S, Sk, fm(Xi305)) )



LOSS:

Li(0f) = Z min {£(Y;, f (Xi:607))

+ (S, S, fn(Xi; 05)) )

Jaccard (loU) distance: ({(A,B) =1

m: mask number (m=6) | p max(A(p), B(p))



o LOSS:

Li(0f) = Z min {£(Y;, f (Xi:607))

T EE(S;S:'L" fm(xi§ Hf))}

e soft constraints

’gc(gpv‘san) — SP{D(‘S‘P_B)Hl
+  [|8n ® (Sn — (L= B))|1,

where © denotes the Hadamard elementwise product.
predicted mask B € [0, 1]w*".

Positive chick(s] 5,  Negative click(s) 5.
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* Input: The the image X, clicks Sp and Sn, distance maps and M channels of Segmentation

Masks
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* The output : M-vector
* Loss: cross-entropy loss

Segmentation network
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Diverse segmentations
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(a) Input (b) Segmentation 1 (c) Segmentation 2 (d) Segmentation w/o diversity

Figure 2. Illustration of diversity given one positive input click. (a) shows the input image with a positive click (green). (b) and (c) show
two of the intermediate segmentations in ). (d) shows the segmentation that would have been produced by the same network f without
diversity (M = 1).

* testing: The first click is positive and each subsequent click is placed on a
pixel that is still misclassified .



Fast Interactive Object Annotation with Curve-GCN

 Predict all the vertices of a polygon using a Graph Convolutional Network simultaneously .

Q Curve-GCN

Polygon @) Spline
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Figure 2: Curve-GCN: We initialize N control points (that form a closed curve) along a circle centered in the image crop with a diameter of 70% of image
height. We form a graph and propagate messages via a Graph Convolutional Network (GCN) to predict a location shift for each node. This 1s done iteratively
(3 times n our work). At each iteration we extract a feature vector for each node from the CNN’s features F', using a bilinear interpolation kernel.

e 1. CNN serving as an image feature extractor.

— additional branches are trained to predict the probability of existence of an object
edge/vertex on a 28 X 28 grid. We train these two branches with the binary
cross entropy loss.
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Figure 2: Curve-GCN: We initialize N control points (that form a closed curve) along a circle centered in the image crop with a diameter of 70% of image
height. We form a graph and propagate messages via a Graph Convolutional Network (GCN) to predict a location shift for each node. This 1s done iteratively
(3 times n our work). At each iteration we extract a feature vector for each node from the CNN’s features F', using a bilinear interpolation kernel.

* 1.CNN serving as an image feature extractor.
e 2.GCN:

— We initialize the nodes of the GCN to be at a static initial central position.

— Represent object using N control points, which are connected to form a cycle, with straight lines (thus forming a
polygon), or higher order curves (forming a spline).

—  GCN predicts a location offset for each node, aiming to move the node correctly onto the object’s boundary .
—  We define the graph to be G = (V; E)



GCN Model : multi-layer GCN

Input feature
F:f? = concat{ F(x;,vy;), ;,v; }

node cp, at layer [ 1s expressed as:

[+1 [ gl [ rl
fiT = wofi + Z w f;

cp; EN(ep;)
Graph-ResNet : rt = ReLU(wjhf! + Z -u.ﬂilf;)
cp,EN(cp;)
ri“ = wyrl + Z ?j'ilr‘;
cp,;EN(cp;)
fith = ReLU(r;™" +f)

On top of the last GCN layer, apply a single FC layer to predict a relative location shift:
(Az;, Ay;)

[m;, y;] = [z; + Az, yi + Ay
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Figure 2: Curve-GCN: We initialize N control points (that form a closed curve) along a circle centered in the image crop with a diameter of 70% of image
height. We form a graph and propagate messages via a Graph Convolutional Network (GCN) to predict a location shift for each node. This 1s done iteratively
(3 times n our work). At each iteration we extract a feature vector for each node from the CNN’s features F', using a bilinear interpolation kernel.

* 1.CNN serving as an image feature extractor.
e 2.GCN

3. Spline Parametrization
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Figure 2: Curve-GCN: We initialize N control points (that form a closed curve) along a circle centered in the image crop with a diameter of 70% of image
height. We form a graph and propagate messages via a Graph Convolutional Network (GCN) to predict a location shift for each node. This 1s done iteratively
(3 times n our work). At each iteration we extract a feature vector for each node from the CNN’s features F', using a bilinear interpolation kernel.

* 1.CNN serving as an image feature extractor.

e 2.GCN
3. Spline Parametrization

K-—1
® 4. LOSS Point Matching LOSS: Lmatch[:p:l p!} jE[Dlnl::;‘l‘i'—I] Z ||pi - p;j+ﬂ%;‘f||1

1=l

Differentiable Accuracy Loss: Lrender(0) = || M(0) — Mg,



PhraseClick: Toward Achieving Flexible Interactive
Segmentation by Phrase and Click

propose to employ phrase expressions as another interaction input to infer the attributes of
target object.

Click what is the target-of-interest?

22

where is “the conw”?

Or/? Or?

Click is better on *where® Phrase is better on “whar



PhraseClick: Toward Achieving Flexible Interactive
Segmentation by Phrase and Click

e propose to employ phrase expressions as another interaction input to infer the attributes of
target object.

The man in black suit Red flowers The man in red Green snake Woman in purple dress

L I
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Vision part Network: ResNet-101 based DeeplLabv3+

distance maps and concatenated with original image to form a 5-channel input .
language part : word-to-vector model and bi-directional LSTM

post-processing : graph cut



Vision part Network
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Fig. 4. Attribute Attention: It emphasizes feature channels that have larger
response in semantic attribute learning, which is based on the phrase interaction, click
interaction and visual patterns.
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* Loss:
 the binary cross-entropy loss for the segmentation

L., =—tlog(a(s)) — (1 =t)log(l —a(s))

 the attribute learning :

N
=Y wi(ailog(a(p:)) + (1 = a;)log(1 — o(p;))

'I.=



Interactions

3 Prediction

Interaction case 2: click first, then refine with phrase
Click Phrase: little child

Interaction case 3: click first, then refine with clicks
Click Click

.
.
-

Fig. 8. Our interaction process is more flexible. The user can choose either




Deep Interactive Thin Object Selection
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Efficient Full Image Interactive Segmentation by
Leveraging Within-image Appearance Similarity

* interactive full-image semantic segmentation

Lssdig Lie ALV vl URIERLDE

Fig. 1. An example of annotation using our Magic Paint approach. The user first draws
a blue stroke on a person, which we automatically propagate to label the majority of
that person and the other one (left). Next, the annotator draws a red stroke, which
causes Magic Paint to both correct some minor leaks from the blue region and also
propagates correctly to the wall region of the stadium (middle). Finally a single green
stroke by the annotator gets correctly propagated to the entire ground (right). Note
how just three simple strokes already lead to correctly annotating most of this image.




strokes

with DCRF with 1-nn

 we represent the output of the global pixel similarity computation between the labeled and
unlabeled pixels in the form of distance maps.



Fig. 5. A few annotation examples of Magic Paint on ADE-20k (first column), Fash-
ionista (fourth column) and COCO datasets (other columns). The top row shows the
original image while the bottom row shows the annotation result, with the drawn
strokes. The majority of the strokes are drawn in the center of the objects, while the
border strokes are often in freeze foreground mode. Note how typically a large portion
of the image is automatically labeled by Magic Paint (all pixels outside any stroke).
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Fig. 6. Experimental results on COCO-val-100. Comparison of model variants in sim-
ulation (left) and evaluation with real human annotators (right).



