Yuval Nirkin\* Facebook AI & Bar-Ilan University Lior Wolf Facebook AI & Tel Aviv University Tal Hassner Facebook AI

• CVPR 2021

#### Contribution

**Scene understanding** plays a crucial role in semantic segmentation, Providing the network with additional adaptivity by hypernet.



- Meta-learning technique(Referred to as dynamic networks or hypernet)
  - learn 'how to learn a new knowledge'?(学会学习)



• Hyper Conv:



nn.Conv2d(in\_channels, out\_channels, kernel\_size)

F.conv2d(x, w, b, stride=, dilation=, padding=,groups=)

- $X \rightarrow$  feature map(batchsize, channel, h, w)
- w  $\rightarrow$  weight of conv(out\_channel, in\_channel, kh, kw)
- b  $\rightarrow$  bias of conv(out\_channel)



- Meta-learning technique(Referred to as dynamic networks or hypernet)
  - Hyper Conv:





#### **Positional embedding:**(5x5)

tensor([[[-1.0000, -0.5000, 0.0000, 0.5000, 1.0000], [-1.0000, -0.5000, 0.0000, 0.5000, 1.0000], [-1.0000, -0.5000, 0.0000, 0.5000, 1.0000], [-1.0000, -0.5000, 0.0000, 0.5000, 1.0000], [-1.0000, -0.5000, 0.0000, 0.5000, 1.0000]],

> [[-1.0000, -1.0000, -1.0000, -1.0000, -1.0000], [-0.5000, -0.5000, -0.5000, -0.5000, -0.5000], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.5000, 0.5000, 0.5000, 0.5000, 0.5000], [ 1.0000, 1.0000, 1.0000, 1.0000, 1.0000]]]])

#### • Overall network architecture

- Encoder(hypernetwork): EfficientNet/ ResNet18/ PSPNet50
- Context head(weight mapper)
- Decoder(meta block)



- Backbone (EfficientNet / ResNet 18 / PSPNet50)
  - Stride1 ->RGB map
  - Stride2、Stride4、Stride8、Stride16 -> 1×1conv -> feature map
  - Stride32 -> weight
  - Position embedding  $P_{i,j}^{H,W} = (\frac{2i-H+1}{H-1}, \frac{2j-W+1}{W-1}), i \in [0, H), j \in [0, W)$ ,  $P^{H,W} \in \mathbb{R}^{2 \times H \times W}$



#### Positional embedding:(5x5)

tensor([[[[-1.0000, -0.5000, 0.0000, 0.5000, 1.0000], [-1.0000, -0.5000, 0.0000, 0.5000, 1.0000], [-1.0000, -0.5000, 0.0000, 0.5000, 1.0000], [-1.0000, -0.5000, 0.0000, 0.5000, 1.0000], [-1.0000, -0.5000, 0.0000, 0.5000, 1.0000]],

> [[-1.0000, -1.0000, -1.0000, -1.0000], [-0.5000, -0.5000, -0.5000, -0.5000], [ 0.0000, 0.0000, 0.0000, 0.0000], [ 0.5000, 0.5000, 0.5000, 0.5000], [ 1.0000, 1.0000, 1.0000, 1.0000]]]])

- **Context head**(stride = 32)
  - Employ  $2 \times 2$  convolutions with a stride of 2
  - Computationally cheaper than  $3 \times 3$  convolutions
  - Padding for the low-resolution feature maps significantly increase the spatial resolution



- Meta block
  - point-wise convolution(pw) + depth-wise convolution(dw) + point-wise convolution(pw)



#### • Weight mapper

• Employing the full signal in each  $m_i$  is inefficient, because  $\phi$  (Signal feature) is directly mapped into a large number of weights.

| $m_5$ channels | $82 \rightarrow 64$                |                                                        |
|----------------|------------------------------------|--------------------------------------------------------|
| $m_4$ channels | $94 \rightarrow 32$                | Cignal fasture channel, 1900                           |
| $m_3$ channels | $44 \rightarrow 16$                | Signal Teature Channel: 1280                           |
| $m_2$ channels | $24 \rightarrow 48 \rightarrow 16$ |                                                        |
| $m_1$ channels | $22 \rightarrow 44 \rightarrow 12$ | Weight_num for each stage: [7298, 4070, 760, 270, 156] |

#### • Weight mapper

- divide the channels of  $\varphi$  into parts,  $C_{\varphi 0}$ , ...,  $C_{\varphi n}$ , which are relative in size to the required number of weights of each meta.
- the number of groups  $g_{wi}$ , controls the amount of computations and trainable parameters invested in producing the weights for mi.

```
Algorithm 1 Divides the channels, C, in unit size, s_u, into chunks relative to the weights, w_0, \ldots, w_n.
```

```
1: procedure DIVIDE_CHANNELS(C, s_u, w_0, \ldots, w_n)
        total\_units \leftarrow \frac{C}{s_u}
 2:
       w \leftarrow sort(w_0, \dots, w_n)r \leftarrow \frac{total\_units}{\sum_{i=0}^{n} w_i}
                                                                                                                      ▷ Descending order
 3:
                                                                                                                  ▷ Units to weights ratio
 4:
        out \leftarrow \{s_u | \text{ for each } w_i \in w\}
                                                                      ▷ Each weight group should be allocated with at least one unit
 5:
        total\_units \leftarrow total\_units - |out|
 6:
        i \leftarrow 0
 7:
        while total\_units \neq 0 do
 8:
            if i = n
9:
                                                               Weight num for each stage: [7298, 4070, 760, 270, 156]
                 curr\_units \leftarrow total\_units
10:
            else
11:
                                                              Feature channel: 1280 \longrightarrow [736]
                                                                                                                                          400
                                                                                                                                                        64
                                                                                                                                                                  16
                                                                                                                                                                             64]
                curr\_units \leftarrow |w_i \cdot r| - 1
12:
            out_i \leftarrow out_i + curr\_units \cdot s_u
13:
            total\_units \leftarrow total\_units - curr\_units
14:
            i \leftarrow i + 1
15:
        return out
16:
```

- Dynamic patch-wise convolution
  - Each color represents weights corresponding to a specific patch and '\*' is the convolution operation.





• Dynamic patch-wise convolution



Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

#### • Result-resolution

| Method             | Backbone        | Resolution       | mIoU (%)   |      | FDS   | GEL OP | Params |
|--------------------|-----------------|------------------|------------|------|-------|--------|--------|
| Wiethod            |                 |                  | val        | test | 115   | ULUI S | (M)    |
| ERFNet [38]        | -               | $1024\times512$  | -          | 69.7 | 41.7  | 21.7*  | 2.0*   |
| ESPNet [30]        | ESPNet          | $1024\times512$  | -          | 60.3 | 112.9 | -      | -      |
| ESPNetV2 [30]      | ESPNetV2        | $1024\times512$  | 66.4       | 66.2 | 61.9* | 2.7    | 1.3*   |
| ICNet [57]         | PSPNet50        | $2048\times1024$ | -          | 69.5 | 30.3  | -      | -      |
| GUNet [29]         | DRN-D-22        | $1024\times512$  | 69.6       | 70.4 | 33.3  | -      | -      |
| DFANet A' [25]     | Xception A      | $1024\times512$  | -          | 70.3 | 160.0 | 1.7    | 7.8    |
| DFANet A [25]      | Xception A      | $1024\times1024$ | -          | 71.3 | 100.0 | 3.4    | 7.8    |
| SwiftNetRN-18 [32] | ResNet18        | $2048\times1024$ | 75.4       | 75.5 | 39.9  | 104.0  | 11.8   |
| BiSeNetV1 [53]     | ResNet18        | $1536\times768$  | 74.8       | 74.7 | 65.5  | 75.2*  | 49.0   |
| BiSeNetV2 [52]     | -               | $1024\times512$  | 73.4       | 72.6 | 156.0 | 21.2   | -      |
| BiSeNetV2-L [52]   | -               | $1024\times512$  | $75.8^{1}$ | 75.3 | 47.3  | 118.5  | -      |
| TD4-Bise18 [22]    | BiseNet18       | $2048\times1024$ | 75.0       | 74.9 | 47.6  | -      | -      |
| HyperSeg-M         | EfficientNet-B1 | $1024\times512$  | 76.2       | 75.8 | 36.9  | 7.5    | 10.1   |
| HyperSeg-S         | EfficientNet-B1 | $1536\times768$  | 78.2       | 78.1 | 16.1  | 17.0   | 10.2   |

| Params                   | HyperSeg-L<br>(PASCAL VOC)         | HyperSeg-S<br>(Cityscapes)                                            | HyperSeg-M<br>(Cityscapes)         |
|--------------------------|------------------------------------|-----------------------------------------------------------------------|------------------------------------|
| Backbone                 | EfficientNet-B3                    | EfficientNet-B1                                                       | EfficientNet-B1                    |
| Resolution               | $512 \times 512$                   | $1536\times768$                                                       | $1024\times512$                    |
| $r_1,\ldots,r_5$         | 1/4, 1/4, 1/4, 1/4, 1/4, 1/4       | -, <sup>2</sup> /5, <sup>1</sup> /4, <sup>1</sup> /5, <sup>1</sup> /6 | 1/4, 1/4, 1/4, 1/4, 1/4, 1/4       |
| $g_{w_0},\ldots,g_{w_5}$ | 16, 16, 16, 16, 16, 16             | -, 4, 16, 8, 16, 32                                                   | -, 4, 16, 8, 16, 32                |
| $m_5$ channels           | $98 \rightarrow 96$                | $130 \rightarrow 32$                                                  | $82 \rightarrow 64$                |
| $m_4$ channels           | $132 \rightarrow 34$               | $62 \rightarrow 16$                                                   | $94 \rightarrow 32$                |
| $m_3$ channels           | $48 \rightarrow 96 \rightarrow 12$ | $26 \rightarrow 8$                                                    | $44 \rightarrow 16$                |
| $m_2$ channels           | $22 \rightarrow 44 \rightarrow 8$  | $14 \rightarrow 28 \rightarrow 8$                                     | $24 \rightarrow 48 \rightarrow 16$ |
| $m_1$ channels           | $16 \rightarrow 32 \rightarrow 6$  | $26 \rightarrow 52 \rightarrow 19$                                    | $34 \rightarrow 68 \rightarrow 19$ |
| $m_0$ channels           | $11 \rightarrow 22 \rightarrow 21$ | -                                                                     | -                                  |

#### • Result-backbone/ gride size

| Method                 | Backbone        | mIoU | FPS   | Params |
|------------------------|-----------------|------|-------|--------|
| Wethod                 | Dackoone        | (%)  | 115   | (M)    |
| ICNet [57]             | PSPNet50        | 67.1 | 27.8  | -      |
| DFANet A [25]          | Xception A      | 64.7 | 120.0 | 7.8    |
| SwiftNetRN-18 [32]     | ResNet18        | 72.6 | 85.8* | 11.8   |
| BiSeNetV1 [53]         | ResNet18        | 68.7 | 116.2 | 49.0   |
| BiSeNetV2 [52]         | -               | 72.4 | 124.5 | -      |
| BiSeNetV2-L [52]       | -               | 73.2 | 32.7  | -      |
| TD4-PSP18 [22]         | PSPNet18        | 72.6 | 25.0  | -      |
| TD2-PSP50 [22]         | PSPNet50        | 76.0 | 11.1  | -      |
| HyperSeg-S             | ResNet18        | 77.0 | 32.5  | 16.2   |
| HyperSeg-L             | ResNet18        | 77.1 | 11.5  | 16.7   |
| HyperSeg-S             | PSPNet18        | 76.6 | 31.3  | 17.2   |
| HyperSeg-L             | PSPNet18        | 77.5 | 11.4  | 17.6   |
| HyperSeg-S             | PSPNet50        | 77.1 | 9.3   | 57.6   |
| HyperSeg-L             | PSPNet50        | 77.9 | 2.2   | 67.9   |
| HyperSeg-S w/o DPWConv | EfficientNet-B1 | 77.3 | 45.5  | 9.9    |
| HyperSeg-L w/o DPWConv | EfficientNet-B1 | 78.4 | 21.6  | 10.3   |
| HyperSeg-S             | EfficientNet-B1 | 78.4 | 38.0  | 9.9    |
| HyperSeg-L             | EfficientNet-B1 | 79.1 | 16.6  | 10.2   |

| Grid size      | Positional encoding | mIoU (%) | FPS  |
|----------------|---------------------|----------|------|
| $1 \times 1$   | ×                   | 77.56    | 46.8 |
| $4 \times 4$   | ×                   | 78.92    | 22.4 |
| $8 \times 8$   | ×                   | 80.23    | 26.9 |
| 16 	imes 16    | ×                   | 80.33    | 28.2 |
| $16 \times 16$ | $\checkmark$        | 80.61    | 26.8 |