Emerging Properties in Self-Supervised Vision Transformers

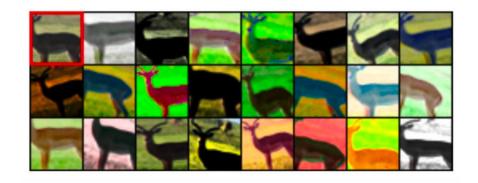
Facebook Al Research

Self-supervised pretraining

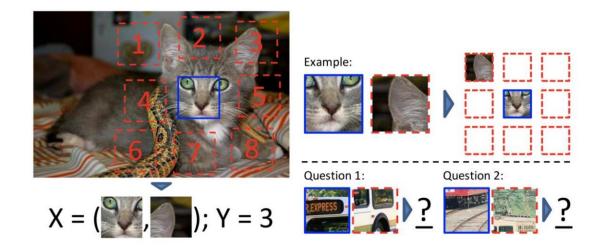
- Segmentation supervised
 - Image -> Logits mask prediction -> CELoss <- GT mask (Human annotate)
 - Image (-> Semantic information) -> Logits mask prediction
- Segmentation self-supervised
 - Image (-> Semantic info) -> Pretext pred -> Loss <- Pretext GT (Generated)
 - Image (-> Semantic info) -> Logits mask prediction -> CELoss <- GT mask

Self-Supervised Pretext

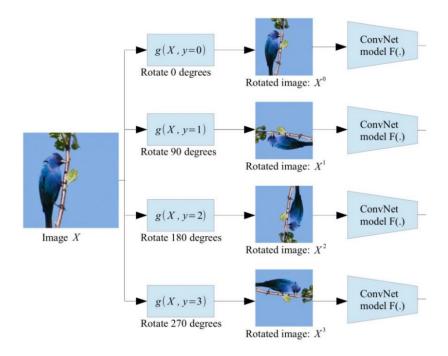
Distortion



Patches



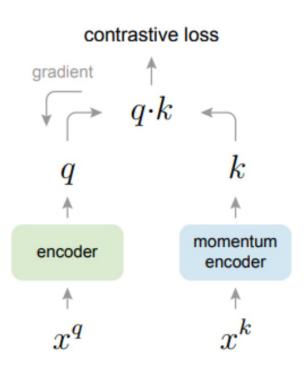
Rotation



MoCo - Dictionary Look-up

- Keys in the dictionaries
 - Sample from data, images or patches
 - Represented by encoder network
- Encoded 'query'
 - Similar to its matching 'key'
 - Dissimilar to others
- Loss

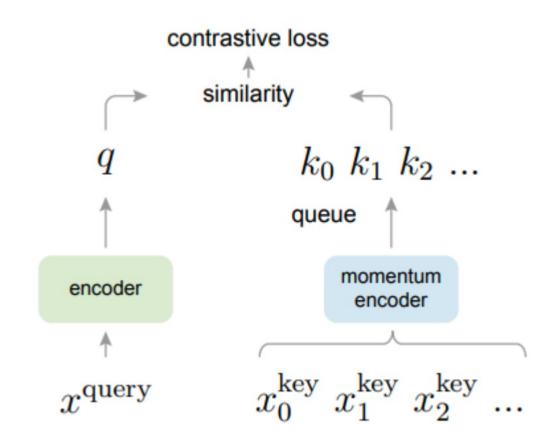
$$\mathcal{L}_q = -\log \frac{\exp(q \cdot k_+ / \tau)}{\sum_{i=0}^K \exp(q \cdot k_i / \tau)}$$



MoCo

- Two encoder
 - Same arch
 - Different param
 - One update by SGD
 - Another update in momentum way

$$\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}$$
.



Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron^{1,2} Hugo Touvron^{1,3} Ishan Misra¹ Hervé Jegou¹ Julien Mairal² Piotr Bojanowski¹ Armand Joulin¹

¹ Facebook AI Research ² Inria* ³ Sorbonne University

Figure 1: Self-attention from a Vision Transformer with 8×8 patches trained with no supervision. We look at the self-attention of the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model automatically learns class-specific features leading to unsupervised object segmentations.

- Dino, self-distillation with no label
- Self-Supervise, knowledge distillation, transformer

Motivation

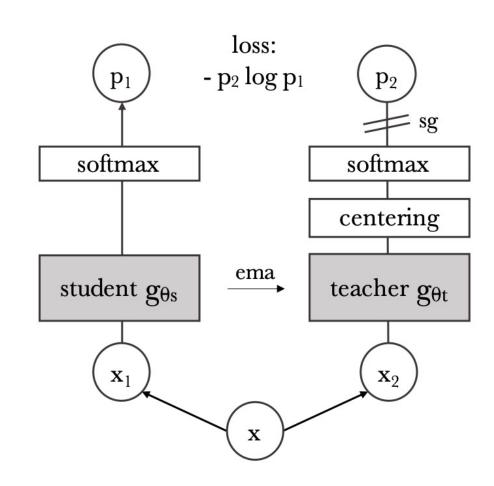
- Success of Transformers in NLP: use of self-supervised pretraining
 - Self-supervised training
 - Use the words in a sentence to create pretext tasks
 - Provide richer learning signal
 - Normal (supervised) training
 - Predicting single label per sentence
- Image level supervision
 - Single concept from a predefined set of a few thousand categories of objects

Motivation

- Self-supervised ViT feature
 - Contain scene layout and object boundaries
 - Performs well with k-NN method, without finetuning or linear classifier

Approach

- Case of pair of views (x1, x2)
- x1, x2, same image different transforms
- Networks, same arch different params
- Output K-dim vector
 - T: centering & sharpening, as GT
- Param update
 - S: Backprop
 - T: Stop gradient & exponential moving average

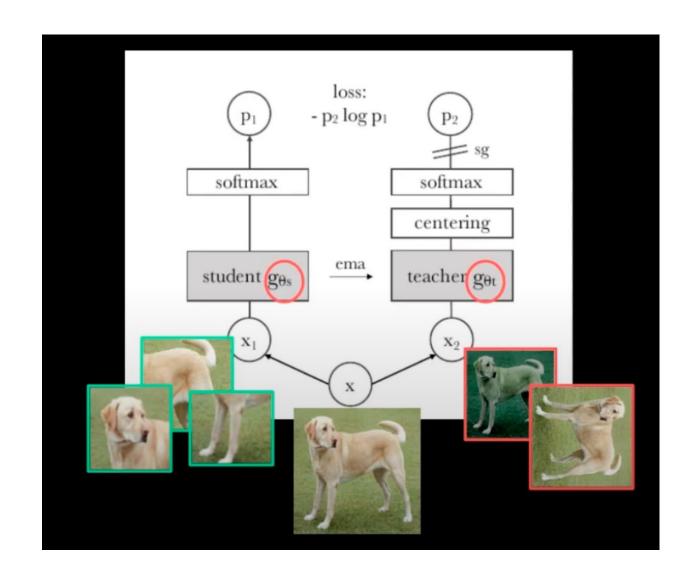


Input Multi-view

- V, set of different views
 - Two global views, X_g1 X_g2
 - Several (8) local views, X_li

- Network
 - S: all views
 - T: global views

$$\min_{\theta_s} \sum_{x \in \{x_1^g, x_2^g\}} \sum_{\substack{x' \in V \\ x' \neq x}} H(P_t(x), P_s(x')).$$



Centering and Sharpening

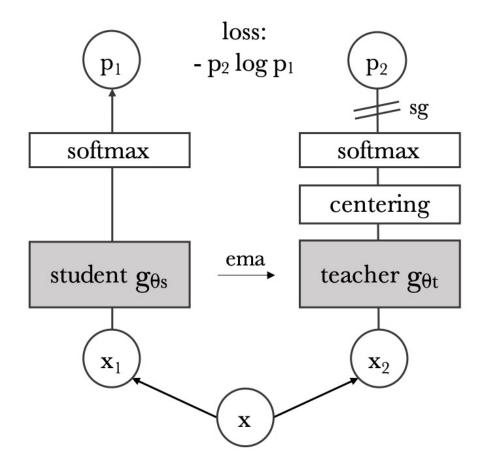
• Centering teacher network, gt(x)

$$g_t(x) \leftarrow g_t(x) + c$$
.

$$c \leftarrow mc + (1 - m)\frac{1}{B} \sum_{i=1}^{B} g_{\theta_t}(x_i),$$

• Sharpening in softmax

$$P_s(x)^{(i)} = \frac{\exp(g_{\theta_s}(x)^{(i)}/\tau_s)}{\sum_{k=1}^K \exp(g_{\theta_s}(x)^{(k)}/\tau_s)},$$



```
a = [3, 2, 1]
softmax(a)
array([0.66524096, 0.24472847, 0.09003057])
softmax([i * 10 for i in a])
array([9.99954600e-01, 4.53978686e-05, 2.06106005e-09])
```

Centering and Sharpening

- Avoid collapse
- Centering
 - Encourage uniform output
- Sharpening
 - One dim dominating

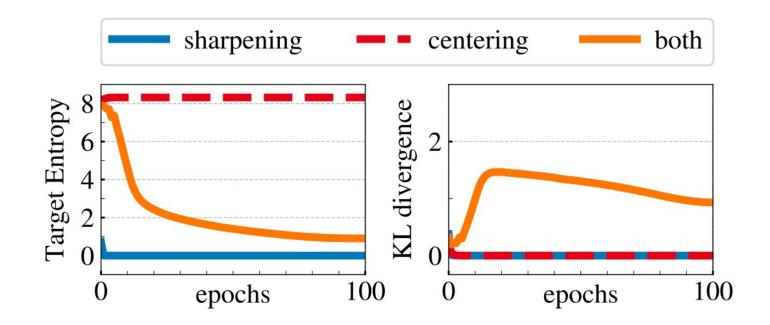


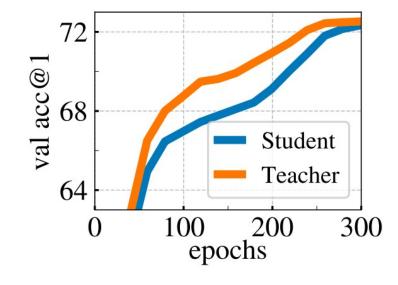
Figure 7: Collapse study. (left): evolution of the teacher's target entropy along training epochs; (right): evolution of KL divergence between teacher and student outputs.

Param Update

- Student
 - Adamw, backprop
- Teacher

$$\theta_t \leftarrow \lambda \theta_t + (1 - \lambda)\theta_s$$

• λ 0.996 -> 1



Teacher	Top-1
Student copy	0.1
Previous iter	0.1
Previous epoch	66.6
Momentum	72.8

Figure 6: Top-1 accuracy on ImageNet validation with k-NN classifier. (**left**) Comparison between the performance of the momentum teacher and the student during training. (**right**) Comparison between different types of teacher network. The momentum encoder leads to the best performance but is not the only viable option.

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

```
# qs, qt: student and teacher networks
# C: center (K)
# tps, tpt: student and teacher temperatures
# 1, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples
   x1, x2 = augment(x), augment(x) # random views
    s1, s2 = qs(x1), qs(x2) # student output n-by-K
   t1, t2 = qt(x1), qt(x2) # teacher output n-by-K
    loss = H(t1, s2)/2 + H(t2, s1)/2
    loss.backward() # back-propagate
    # student, teacher and center updates
   update(qs) # SGD
    gt.params = 1*gt.params + (1-1)*gs.params
    C = m*C + (1-m)*cat([t1, t2]).mean(dim=0)
def H(t, s):
   t = t.detach() # stop gradient
    s = softmax(s / tps, dim=1)
   t = softmax((t - C) / tpt, dim=1) # center + sharpen
    return - (t * log(s)).sum(dim=1).mean()
```

Training Detail

- 1024 batch size
- 16 GPUs, v100
- 100 epoch

Implementation details. We pretrain the models on the ImageNet dataset [60] without labels. We train with the adamw optimizer [44] and a batch size of 1024, distributed over 16 GPUs when using ViT-S/16. The learning rate is linearly ramped up during the first 10 epochs to its base value determined with the following linear scaling rule [29]: lr = 0.0005 * batchsize/256. After this warmup, we decay the learning rate with a cosine schedule [43]. The weight decay also follows a cosine schedule from 0.04 to 0.4. The temperature τ_s is set to 0.1 while we use a linear warm-up for τ_t from 0.04 to 0.07 during the first 30 epochs. We follow the data augmentations of BYOL [30] (color jittering, Gaussian blur and solarization) and multi-crop [10] with a bicubic interpolation to adapt the position embeddings to the scales [19, 69]. The code and models to reproduce our results is publicly available.

Table 8: **Time and memory requirements.** We show total running time and peak memory per GPU ("mem.") when running ViT-S/16 DINO models on two 8-GPU machines. We report top-1 ImageNet val acc with linear evaluation for several variants of multi-crop, each having a different level of compute requirement.

	100 epochs		300 e		
multi-crop	top-1	time	top-1	time	mem.
2×224^2	67.8	15.3h	72.5	45.9h	9.3G
$2 \times 224^2 + 2 \times 96^2$	71.5	17.0h	74.5	51.0h	10.5G
$2 \times 224^2 + 6 \times 96^2$	73.8	20.3h	75.9	60.9h	12.9G
$2 \times 224^2 + 10 \times 96^2$	74.6	24.2h	76.1	72.6h	15.4G

Linear and k-NN classification on ImageNet

Method	Arch.	Param.	im/s	Linear	k-NN
Supervised	RN50	23	1237	79.3	79.3
SCLR [12]	RN50	23	1237	69.1	60.7
MoCov2 [15]	RN50	23	1237	71.1	61.9
InfoMin [67]	RN50	23	1237	73.0	65.3
BarlowT [81]	RN50	23	1237	73.2	66.0
OBoW [27]	RN50	23	1237	73.8	61.9
BYOL [30]	RN50	23	1237	74.4	64.8
DCv2 [10]	RN50	23	1237	75.2	67.1
SwAV [10]	RN50	23	1237	75.3	65.7
DINO	RN50	23	1237	75.3	67.5
Supervised	ViT-S	21	1007	79.8	79.8
BYOL* [30]	ViT-S	21	1007	71.4	66.6
MoCov2* [15]	ViT-S	21	1007	72.7	64.4
SwAV* [10]	ViT-S	21	1007	73.5	66.3
DINO	ViT-S	21	1007	77.0	74.5

Comparison across architectures								
SCLR [12]	RN50w4	375	117	76.8	69.3			
SwAV [10]	RN50w2	93	384	77.3	67.3			
BYOL [30]	RN50w2	93	384	77.4	1—			
DINO	ViT-B/16	85	312	78.2	76.1			
SwAV [10]	RN50w5	586	76	78.5	67.1			
BYOL [30]	RN50w4	375	117	78.6	_			
BYOL [30]	RN200w2	250	123	79.6	73.9			
DINO	ViT-S/8	21	180	79.7	78.3			
SCLRv2 [13]	RN152w3+SK	794	46	79.8	73.1			
DINO	ViT-B/8	85	63	80.1	77.4			

Other task

Table 3: **Image retrieval.** We compare the performance in retrieval of off-the-shelf features pretrained with supervision or with DINO on ImageNet and Google Landmarks v2 (GLDv2) dataset. We report mAP on revisited Oxford and Paris. Pretraining with DINO on a landmark dataset performs particularly well. For reference, we also report the best retrieval method with off-the-shelf features [57].

,			ROx		\mathcal{R} Par	
Pretrain	Arch.	Pretrain	M	Н	M	Н
Sup. [57]	RN101+R-MAC	ImNet	49.8	18.5	74.0	52.1
Sup.	ViT-S/16	ImNet	33.5	8.9	63.0	37.2
DINO	ResNet-50	ImNet	35.4	11.1	55.9	27.5
DINO	ViT-S/16	ImNet	41.8	13.7	63.1	34.4
DINO	ViT-S/16	GLDv2	51.5	24.3	75.3	51.6

Table 4: **Copy detection.** We report the mAP performance in copy detection on Copydays "strong" subset [21]. For reference, we also report the performance of the multigrain model [5], trained specifically for particular object retrieval.

Method	Arch.	Dim.	Resolution	mAP
Multigrain [5] Multigrain [5]	ResNet-50 ResNet-50	2048 2048	224 ² largest side 800	75.1 82.5
Supervised [69]	ViT-B/16	1536	224^2	76.4
DINO	ViT-B/16	1536	224^2	81.7
DINO	ViT-B/8	1536	320^{2}	85.5

Other task

Table 5: **DAVIS 2017 Video object segmentation.** We evaluate the quality of frozen features on video instance tracking. We report mean region similarity \mathcal{J}_m and mean contour-based accuracy \mathcal{F}_m . We compare with existing self-supervised methods and a supervised ViT-S/8 trained on ImageNet. Image resolution is 480p.

Data	Arch.	$(\mathcal{J}\&\mathcal{F})_m$	\mathcal{J}_m	\mathcal{F}_m
INet	ViT-S/8	66.0	63.9	68.1
I/D/Y	RN50	81.8	79.2	84.3
d				
VLOG	RN50	48.7	46.4	50.0
YT-VOS	RN18	65.5	63.3	67.6
Kinetics	RN18	67.6	64.8	70.2
INet	ViT-S/16	61.8	60.2	63.4
INet	ViT-B/16	62.3	60.7	63.9
INet	ViT-S/8	69.9	66.6	73.1
INet	ViT-B/8	71.4	67.9	74.9
	INet I/D/Y Id VLOG YT-VOS Kinetics INet INet INet	INet ViT-S/8 I/D/Y RN50 ad VLOG RN50 YT-VOS RN18 Kinetics RN18 INet ViT-S/16 INet ViT-B/16 INet ViT-S/8	INet ViT-S/8 66.0 I/D/Y RN50 81.8 81.8 81.8 81.8 81.8 81.8 81.8 81.	INet ViT-S/8 66.0 63.9 I/D/Y RN50 81.8 79.2 dd VLOG RN50 48.7 46.4 YT-VOS RN18 65.5 63.3 Kinetics RN18 67.6 64.8 INet ViT-S/16 61.8 60.2 INet ViT-B/16 62.3 60.7 INet ViT-S/8 69.9 66.6

Segmentation supervised vs DINO

Supervised

DINO

	Random	Supervised	DINO
ViT-S/16	22.0	27.3	45.9
ViT-S/8	21.8	23.7	44.7

Figure 4: Segmentations from supervised versus DINO. We visualize masks obtained by thresholding the self-attention maps to keep 60% of the mass. On top, we show the resulting masks for a ViT-S/8 trained with supervision and DINO. We show the best head for both models. The table at the bottom compares the Jaccard similarity between the ground truth and these masks on the validation images of PASCAL VOC12 dataset.

Ablation

Method	Mom.	SK	MC	Loss	Pred.	k-NN	Lin.
1 DINO	✓	X	✓	CE	Х	72.8	76.1
2	×	X	\checkmark	CE	X	0.1	0.1
3	\checkmark	✓	\checkmark	CE	X	72.2	76.0
4	\checkmark	X	X	CE	X	67.9	72.5
5	\checkmark	X	\checkmark	MSE	X	52.6	62.4
6	✓	X	✓	CE	✓	71.8	75.6
7 BYOL	\checkmark	X	X	MSE	\checkmark	66.6	71.4
8 MoCov2	\checkmark	X	X	INCE	X	62.0	71.6
9 SwAV	×	\checkmark	\checkmark	CE	X	64.7	71.8

SK: Sinkhorn-Knopp, MC: Multi-Crop, Pred.: Predictor

CE: Cross-Entropy, MSE: Mean Square Error, INCE: InfoNCE