Brain-Inspired Continual Learning

Liyuan Wang

School of Life Sciences
Department of Computer Science and Technology
Tsinghua University
Continual / Incremental / Lifelong Learning

- New Task / Class, New Instance, New Domain
- Catastrophic Forgetting
- Stability-Plasticity Trade-off

Continual Learning is Getting Hotter and Hotter

Top Keywords

ICLR 2022

McCloskey et al., 1989; McClelland et al., 1995
(Brain-Inspired) Continual Learning Approaches

- **Regularization-Based Methods**
 - Selectively Penalize Parameter Changes, Fast-Slow Weights
 - Synaptic Consolidation, Synaptic Plasticity

- **Replay-Based Methods**
 - Old / Generated Data, Old / Generated Feature
 - Biological Memory Replay, Complementary Learning System

- **Architecture-Based Methods**
 - Parameter Isolation, Sub-modules / Sub-networks
 - Modularization, Neural Inhibition, Engram Ensemble
Triple Memory Networks: A Brain-Inspired Framework

The Brain Memory System

Triple Memory Networks

Liyuan Wang, Bo Lei, Qian Li, Hang Su, Jun Zhu, Yi Zhong. TNNLS, 2021.
Experimental Results

Without accessing to the old data, Triple Memory Networks (TMNs) achieve the state-of-the-art performance in supervised class-incremental learning.

<table>
<thead>
<tr>
<th>Methods</th>
<th>MNIST A_5</th>
<th>MNIST A_{10}</th>
<th>SVHN A_5</th>
<th>SVHN A_{10}</th>
<th>CIFAR-10 A_5</th>
<th>CIFAR-10 A_{10}</th>
<th>ImageNet-50 A_{30}</th>
<th>ImageNet-50 A_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Training</td>
<td>99.87</td>
<td>99.24</td>
<td>92.99</td>
<td>88.72</td>
<td>83.40</td>
<td>77.82</td>
<td>57.35</td>
<td>49.88</td>
</tr>
<tr>
<td>EWC-S [13]</td>
<td>79.36</td>
<td>60.83</td>
<td>38.65</td>
<td>25.36</td>
<td>37.39</td>
<td>21.13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SI-S [14]</td>
<td>78.40</td>
<td>60.18</td>
<td>37.21</td>
<td>23.86</td>
<td>36.96</td>
<td>20.16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RWalk-S [25]</td>
<td>82.08</td>
<td>62.84</td>
<td>39.25</td>
<td>26.63</td>
<td>35.75</td>
<td>22.27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MAS-S [15]</td>
<td>80.40</td>
<td>67.66</td>
<td>37.57</td>
<td>25.11</td>
<td>44.38</td>
<td>19.56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>iCarl [18]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>57.30</td>
<td>43.69</td>
<td>29.38</td>
<td>28.98</td>
</tr>
<tr>
<td>DGMw-S [22]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>36.87</td>
<td>18.84</td>
</tr>
<tr>
<td>EWC-M [41]</td>
<td>70.62</td>
<td>77.03</td>
<td>39.84</td>
<td>33.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DGR [3]</td>
<td>90.39</td>
<td>85.40</td>
<td>61.29</td>
<td>47.28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MeRGAN [21]</td>
<td>98.19</td>
<td>97.00</td>
<td>80.90</td>
<td>66.78</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DGMw [22]</td>
<td>98.75</td>
<td>96.46</td>
<td>83.93</td>
<td>74.38</td>
<td>72.45</td>
<td>56.21</td>
<td>32.14</td>
<td>17.82</td>
</tr>
<tr>
<td>TMNs (ours)</td>
<td>98.80</td>
<td>96.72</td>
<td>87.12</td>
<td>77.08</td>
<td>72.72</td>
<td>61.24</td>
<td>38.23</td>
<td>28.08</td>
</tr>
</tbody>
</table>
ORDisCo: Semi-supervised Continual Learning

- The incremental data are typically partially-labeled in realistic scenarios.
- Representative methods lack the ability to exploit the incremental unlabeled data.

Liyuan Wang, Kuo Yang, Chongxuan Li, Lanqing Hong, Zhenguo Li, Jun Zhu. CVPR 2021.
Experimental Results

Classification

- **SVHN-1**
 - SMB
 - SMB+UMB
 - SMB+UMB+UC
 - ORDisCo

- **CIFAR10-5**
 - SMB
 - SMB+UMB
 - SMB+UMB+UC
 - ORDisCo

Conditional Generation

- **SMB**
- **ORDisCo**

SMB: Replay of Supervised Memory Buffer
UMB: Replay of Unsupervised Memory Buffer
Memory Replay with Compression

\[
\mathcal{P}_q(M^c_q | D) = \frac{\det(L_{M^c_q}(D; q, \theta))}{\sum_{|M| = N^m_q} \det(L_M(D; q, \theta))},
\]

(1) Maximize \(\mathcal{P}_q(M^*_q | D) \quad \frac{\mathcal{P}_q(M^c_q | D)}{\mathcal{P}_q(M^*_q | D)} \leq \mathcal{P}_q(M^*_q | D) \)

(2) Constrain that \(\mathcal{P}_q(M^c_q | D) \) is consistent with \(\mathcal{P}_q(M^*_q | D) \)

\[
L_2(q) = \left| \frac{\mathcal{P}_q(M^c_q | D)}{\mathcal{P}_q(M^*_q | D)} - 1 \right| = \left| \frac{\det(M^c_q^T M^c_q)}{\det(M^*_q^T M^*_q)} Z_q - 1 \right|
\]

\[
= \left| \left(\frac{\text{Vol}^c_q}{\text{Vol}^*_q} \right)^2 Z_q - 1 \right| = \left| R^2_q Z_q - 1 \right|
\]

Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu, Chongxuan Li, Lanqing Hong, Shifeng Zhang, Zhenguo Li, Yi Zhong, Jun Zhu. ICLR 2022.
Memory Replay with Compression

Given a limited storage space, our method can efficiently determine a proper compression quality for incoming data, without repetitive training.
Experimental Results

Large-Scale Class-Incremental Learning

Object Detection for Autonomous Driving

<table>
<thead>
<tr>
<th>Method</th>
<th>AP</th>
<th>AP_{50}</th>
<th>AP_{75}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo</td>
<td>40.36</td>
<td>63.83</td>
<td>43.82</td>
</tr>
<tr>
<td>Labeling</td>
<td>40.75/0.39</td>
<td>65.11/1.28</td>
<td>43.53/-0.29</td>
</tr>
<tr>
<td>Ours</td>
<td>41.50/1.14</td>
<td>65.36/1.53</td>
<td>44.95/1.13</td>
</tr>
<tr>
<td>Unbiased</td>
<td>42.88</td>
<td>66.70</td>
<td>45.99</td>
</tr>
<tr>
<td>Teacher</td>
<td>43.10/0.22</td>
<td>66.88/0.18</td>
<td>46.62/0.63</td>
</tr>
<tr>
<td>Ours</td>
<td>43.72/0.84</td>
<td>67.80/1.10</td>
<td>47.36/1.37</td>
</tr>
</tbody>
</table>
AFEC: Active Forgetting of Negative Transfer

- If the old knowledge conflicts with the new task learning, then precisely remembering the old knowledge will further aggravate the interference.
- Biological neural networks can actively forget the conflicting information, through regulating the learning-triggered synaptic expansion and synaptic convergence.

Liyuan Wang, Mingtian Zhang, Zhongfan Jia, Qian Li, Chenglong Bao, Kaisheng Ma, Jun Zhu, Yi Zhong. NeurIPS, 2021
AFEC: Active Forgetting of Negative Transfer

- We introduce a forgetting factor β and replace the posterior that absorbs all the information of the old tasks by a weighted product distribution:

$$p(\theta|D_A^{train}) = \frac{p(D_A^{train}|\theta)p(\theta)}{p(D_A^{train})}$$

$$p_m(\theta|D_A^{train}, \beta) = \frac{p(\theta|D_A^{train})^{(1-\beta)}p(\theta)^\beta}{Z}$$

- The optimal forgetting factor can maximize the learning of each new task:

$$\beta^* = \arg\max_\beta p(D_B^{train}|D_A^{train}, \beta)$$

$$= \arg\max_\beta \int p(D_B^{train}|\theta)p_m(\theta|D_A^{train}, \beta)d\theta$$
Experimental Results

<table>
<thead>
<tr>
<th>Methods</th>
<th>CIFAR100-SC</th>
<th>CIFAR100</th>
<th>CIFAR10/100</th>
<th>CUB-200 w/ PT</th>
<th>CUB-200 w/o PT</th>
<th>ImageNet-100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A_{10}</td>
<td>A_{20}</td>
<td>A_{10}</td>
<td>A_{20}</td>
<td>A_2</td>
<td>A_{2+20}</td>
</tr>
<tr>
<td>EWC [13]</td>
<td>52.25</td>
<td>51.74</td>
<td>68.72</td>
<td>69.18</td>
<td>85.07</td>
<td>77.75</td>
</tr>
<tr>
<td>* AFEC (ours)</td>
<td>56.28</td>
<td>55.24</td>
<td>72.36</td>
<td>72.29</td>
<td>86.87</td>
<td>81.25</td>
</tr>
<tr>
<td>MAS [1]</td>
<td>52.76</td>
<td>52.18</td>
<td>67.60</td>
<td>69.41</td>
<td>84.97</td>
<td>77.39</td>
</tr>
<tr>
<td>w/ AFEC (ours)</td>
<td>55.26</td>
<td>54.89</td>
<td>69.57</td>
<td>71.20</td>
<td>86.21</td>
<td>80.01</td>
</tr>
<tr>
<td>SI [36]</td>
<td>52.20</td>
<td>51.97</td>
<td>68.72</td>
<td>69.21</td>
<td>85.00</td>
<td>76.69</td>
</tr>
<tr>
<td>w/ AFEC (ours)</td>
<td>55.25</td>
<td>53.90</td>
<td>69.34</td>
<td>70.13</td>
<td>85.71</td>
<td>78.49</td>
</tr>
<tr>
<td>RWALK [2]</td>
<td>50.51</td>
<td>49.62</td>
<td>66.02</td>
<td>66.90</td>
<td>85.59</td>
<td>73.64</td>
</tr>
<tr>
<td>w/ AFEC (ours)</td>
<td>52.62</td>
<td>51.76</td>
<td>68.50</td>
<td>69.12</td>
<td>86.12</td>
<td>77.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>fruit and vegetables</th>
<th>large carnivores</th>
<th>small mammals</th>
<th>household furniture</th>
<th>vehicle 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Results

New Task

Old Task
Summary

- Continual learning is complex, but all roads lead to Rome;

- Successful biological strategies can provide inspirations for and evolve with computational models;

- Order is the appearance, compatibility is the goal;

- Look to the stars (general theoretical insights) and keep feet on the ground (realistic challenges).
Acknowledgement

School of Life Sciences in Tsinghua:
 Prof. Yi Zhong, Prof. Qian Li

Dept. of Comp. Sci. & Tech. in Tsinghua:
 Prof. Jun Zhu, Dr. Chongxuan Li (now at Renmin U), Dr. Xingxing Zhang

Brain-inspire AI Project:
 Prof. Kaisheng Ma, Prof. Chenglong Bao, Zhongfan Jia

Huawei Noah's Ark Lab:
 Dr. Lanqing Hong, Dr. Zhengu Li, Kuo Yang, Mingtian Zhang, Longhui Yu