Brain-Inspired Continual Learning

Liyuan Wang

School of Life Sciences Department of Computer Science and Technology Tsinghua University

Continual / Incremental / Lifelong Learning

(Brain-Inspired) Continual Learning Approaches

Regularization-Based Methods

Selectively Penalize Parameter Changes, Fast-Slow Weights

Synaptic Consolidation, Synaptic Plasticity

Replay-Based Methods

Old / Generated Data, Old / Generated Feature

Biological Memory Replay, Complementary Learning System

Architecture-Based Methods

- Parameter Isolation, Sub-modules / Sub-networks
- Modularization, Neural Inhibition, Engram Ensemble

Triple Memory Networks: A Brain-Inspired Framework

Triple Memory Networks

Liyuan Wang, Bo Lei, Qian Li, Hang Su, Jun Zhu, Yi Zhong. TNNLS, 2021.

Without accessing to the old data, Triple Memory Networks (TMNs) achieve the state-of-the-art performance in supervised class-incremental learning.

		MNIST		SV	HN	CIFA	R-10	ImageNet-50	
	Methods	A_5	A_{10}	A_5	A_{10}	A_5	A_{10}	A_{30}	A_{50}
	Joint Training	99.87	99.24	92.99	88.72	83.40	77.82	57.35	49.88
+ Training Data	EWC-S [13]	79.36	60.83	38.65	25.36	37.39	21.13	-	-
	SI-S [14]	78.40	60.18	37.21	23.86	36.96	20.16	-	-
	RWalk-S [25]	82.08	62.84	39.25	26.63	35.75	22.27	-	-
	MAS-S [15]	80.40	67.66	37.57	25.11	44.38	19.56	-	-
	iCarl [18]	-	-	-	-	57.30	43.69	29.38	28.98
	DGMw-S [22]	-	-	-	-	-	-	36.87	18.84
- Training Data	EWC-M [41]	70.62	77.03	39.84	33.02	-	-	-	-
	DGR [3]	90.39	85.40	61.29	47.28	-	-	-	-
	MeRGAN [21]	98.19	97.00	80.90	66.78	-	_	-	-
	DGMw [22]	98.75	96.46	83.93	74.38	72.45	56.21	32.14	17.82
	TMNs (ours)	98.80	96.72	87.12	77.08	72.72	61.24	38.23	28.08

ORDisCo: Semi-supervised Continual Learning

The incremental data are typically partially-labeled in realistic scenarios.
Representative methods lack the ability to exploit the incremental unlabeled data.

Liyuan Wang, Kuo Yang, Chongxuan Li, Lanqing Hong, Zhenguo Li, Jun Zhu. CVPR 2021.

Classification

SMB: Replay of Supervised Memory Buffer UMB: Replay of Unsupervised Memory Buffer

Conditional Generation

Memory Replay with Compression

Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu, Chongxuan Li, Lanqing Hong, Shifeng Zhang, Zhenguo Li, Yi Zhong, Jun Zhu. ICLR 2022.

Memory Replay with Compression

♦ Given a limited storage space, our method can efficiently determine a proper compression quality for incoming data, without repetitive training.

Large-Scale Class-Incremental Learning

Object Detection for Autonomous Driving

AFEC: Active Forgetting of Negative Transfer

- ♦ If the old knowledge conflicts with the new task learning, then precisely remembering the old knowledge will further aggravate the interference.
- Siological neural networks can actively forget the conflicting information, through regulating the learning-triggered synaptic expansion and synaptic convergence.

AFEC: Active Forgetting of Negative Transfer

 We introduce a forgetting factor β and replace the posterior that absorbs all the information of the old tasks by a weighted product distribution:

$$p(\theta|D_A^{train}) = \frac{p(D_A^{train}|\theta)p(\theta)}{p(D_A^{train})} \xrightarrow{\text{Replace}} p_m(\theta|D_A^{train},\beta) = \frac{p(\theta|D_A^{train})^{(1-\beta)}p(\theta)^{\beta}}{Z}$$

The optimal forgetting factor can maximize the learning of each new task:

$$\begin{split} \beta^* &= \arg\max_{\beta} p(D_B^{train} | D_A^{train}, \beta) \\ &= \arg\max_{\beta} \int p(D_B^{train} | \theta) p_m(\theta | D_A^{train}, \beta) d\theta \end{split}$$

	CIFA	CIFAR100-SC		CIFAR100		CIFAR10/100		CUB-200 w/ PT		CUB-200 w/o PT		ImageNet-100	
Methods	A_{10}	A_{20}	A_{10}	A_{20}	A_2	A_{2+20}	A_5	A_{10}	A_5	A_{10}	A_5	A_{10}	
EWC [13]	52.25	51.74	68.72	69.18	85.07	77.75	81.37	80.92	32.90	42.29	76.12	73.82	
* AFEC (our	s) 56.28	55.24	72.36	72.29	86.87	81.25	83.65	82.04	34.36	43.05	77.64	75.46	
MAS [1]	52.76	52.18	67.60	69.41	84.97	77.39	79.98	79.67	31.68	42.56	75.48	74.72	
w/ AFEC (ou	rs) 55.26	54.89	69.57	71.20	86.21	80.01	82.77	81.31	34.08	42.93	75.64	75.66	
SI [36]	52.20	51.97	68.72	69.21	85.00	76.69	80.14	80.21	33.08	42.03	73.52	72.97	
w/ AFEC (ou	rs) 55.25	53.90	69.34	70.13	85.71	78.49	83.06	81.88	34.04	43.20	75.72	74.14	
RWALK [2	50.51	49.62	66.02	66.90	85.59	73.64	80.81	80.58	32.56	41.94	73.24	73.22	
w/ AFEC (ou	rs) 52.62	51.76	68.50	69.12	86.12	77.16	83.24	81.95	33.35	42.95	74.64	73.86	
fruit and vegetables		large ca	large carnivores small marr		mals househood furn		od furnitu	ure vehicle 1					
Image	10	C	-	-			X						
EWC		<u>)</u>	K	85	1	4	A		87				
AFEC			2	6	3	•	4						

Summary

Continual learning is complex, but all roads lead to Rome;

Successful biological strategies can provide inspirations for and evolve with computational models;

Order is the appearance, compatibility is the goal;

Look to the stars (general theoretical insights) and keep feet on the ground (realistic challenges).

Acknowledgement

School of Life Sciences in Tsinghua:
 Prof. Yi Zhong, Prof. Qian Li

Dept. of Comp. Sci. & Tech. in Tsinghua:
 Prof. Jun Zhu, Dr. Chongxuan Li (now at Renmin U), Dr. Xingxing Zhang

Brain-inspire AI Project:
 Prof. Kaisheng Ma, Prof. Chenglong Bao, Zhongfan Jia

Huawei Noah's Ark Lab:

Dr. Lanqing Hong, Dr. Zhenguo Li, Kuo Yang, Mingtian Zhang, Longhui Yu

Thank You!