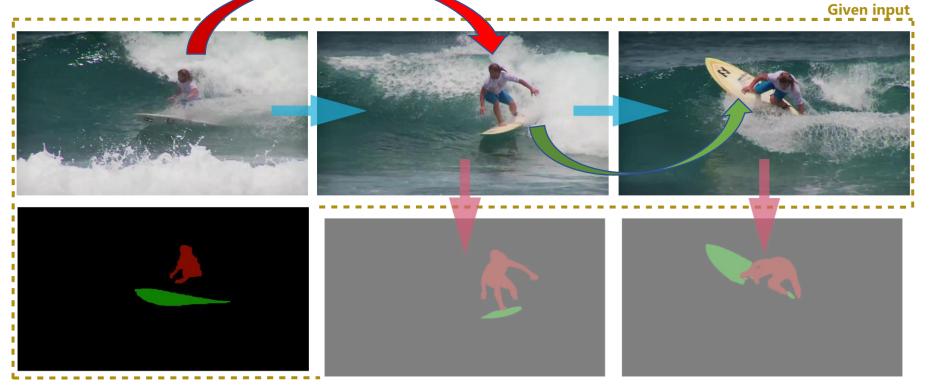

XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model

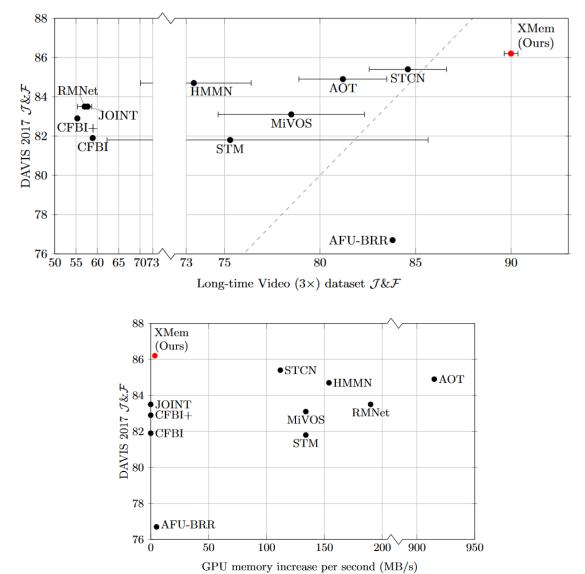
Ho Kei Cheng and Alexander G. Schwing

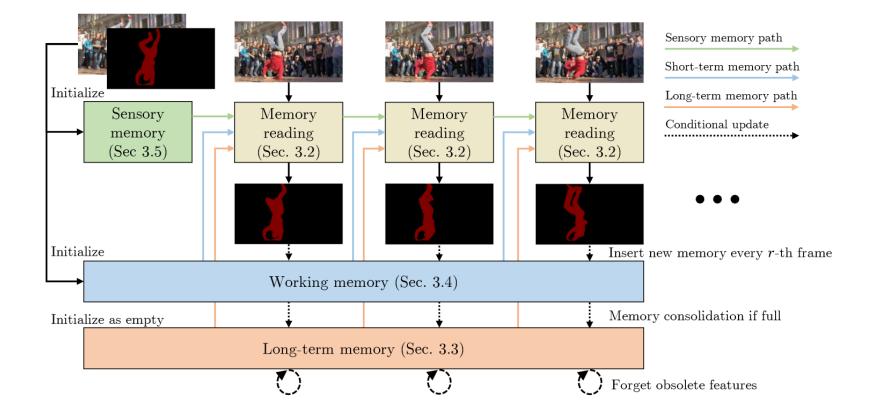
University of Illinois Urbana-Champaign
{hokeikc2, aschwing}@illinois.edu

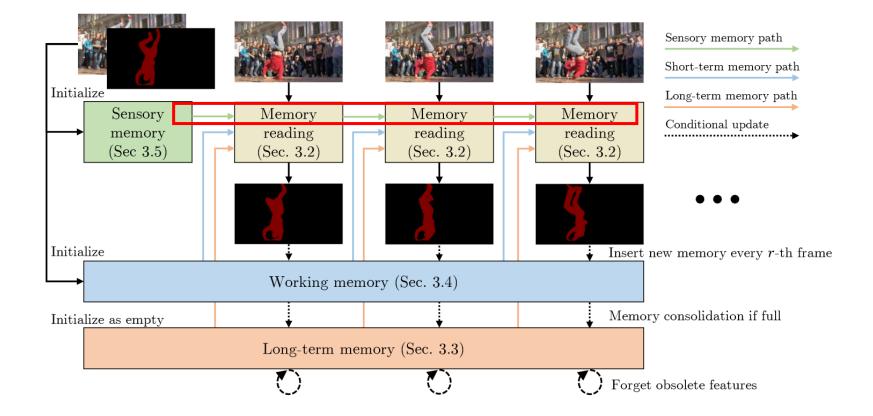


	Ho Kei Cheng	引用次数					
66.	其他姓名		总计	2017 年至今			
US		引用	221	221			
		h 指数	3	3			
		i10 指数	3	3			

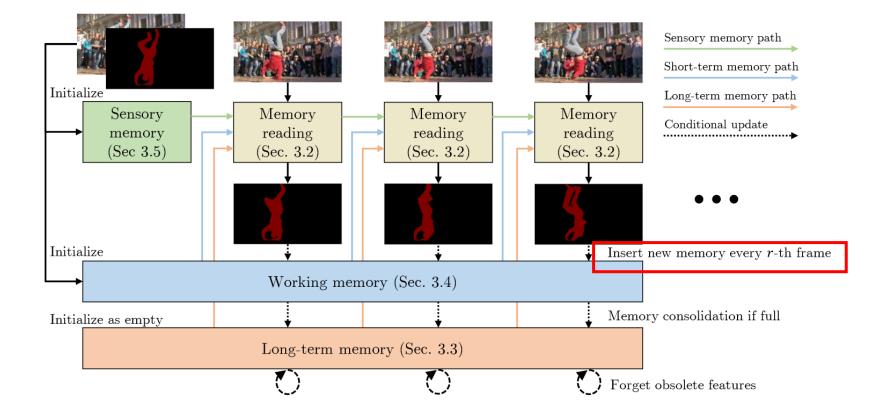
CascadePSP: Toward Class-Agnostic and Very High-Resolution Segmentation via Global and Local Refinement HK Cheng, J Chung, YW Tai, CK Tang IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020	88	2020
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation HK Cheng, YW Tai, CK Tang Advances in Neural Information Processing Systems (NeurIPS), 2021	75	2021
Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion HK Cheng, YW Tai, CK Tang IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021	56	2021
XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model HK Cheng, AG Schwing European Conference on Computer Vision (ECCV), 2022	2	2022

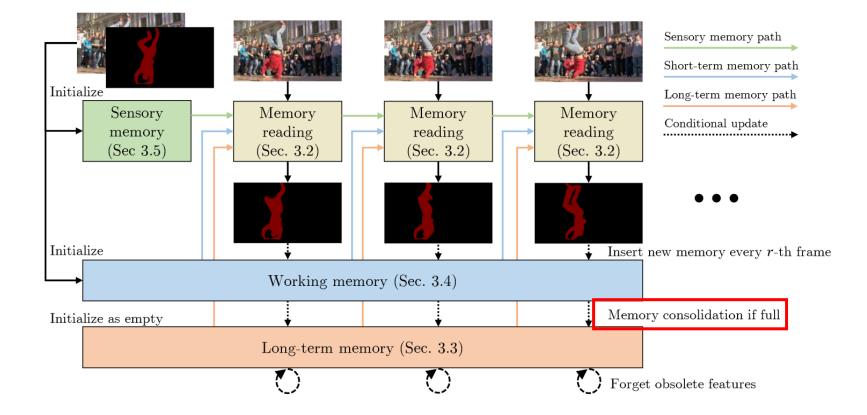

Video Object Segmentation (VOS)

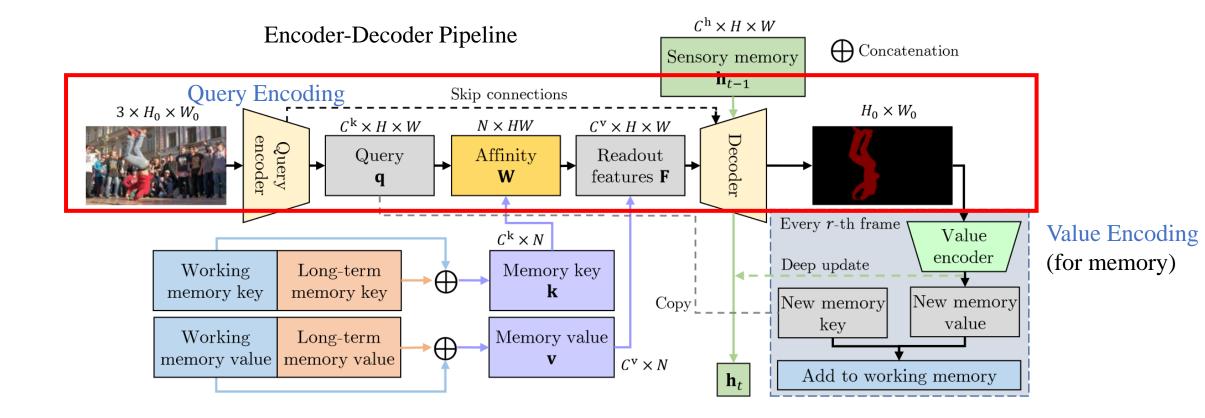

- Semi-supervised setting
 - Provide first frame annotation
 - Multi instances

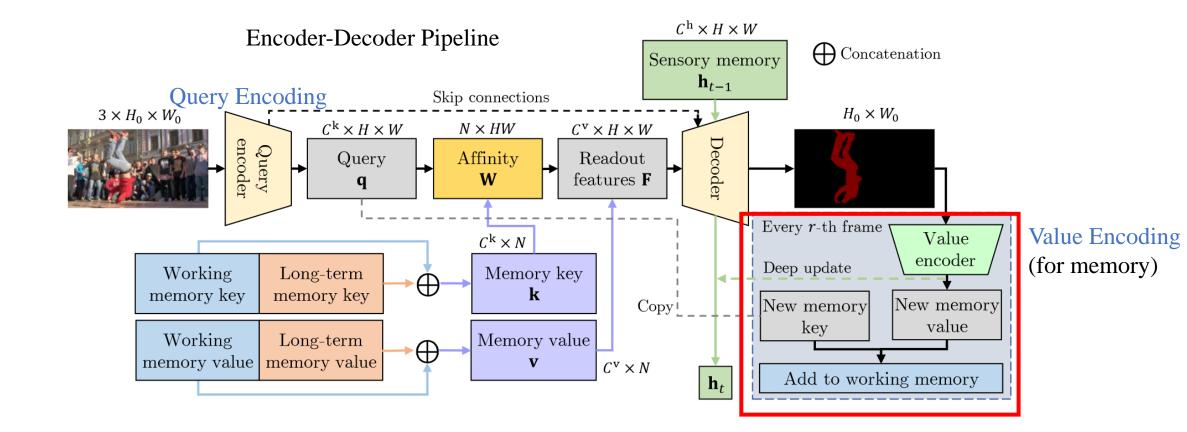

Video Object Segmentation (VOS)

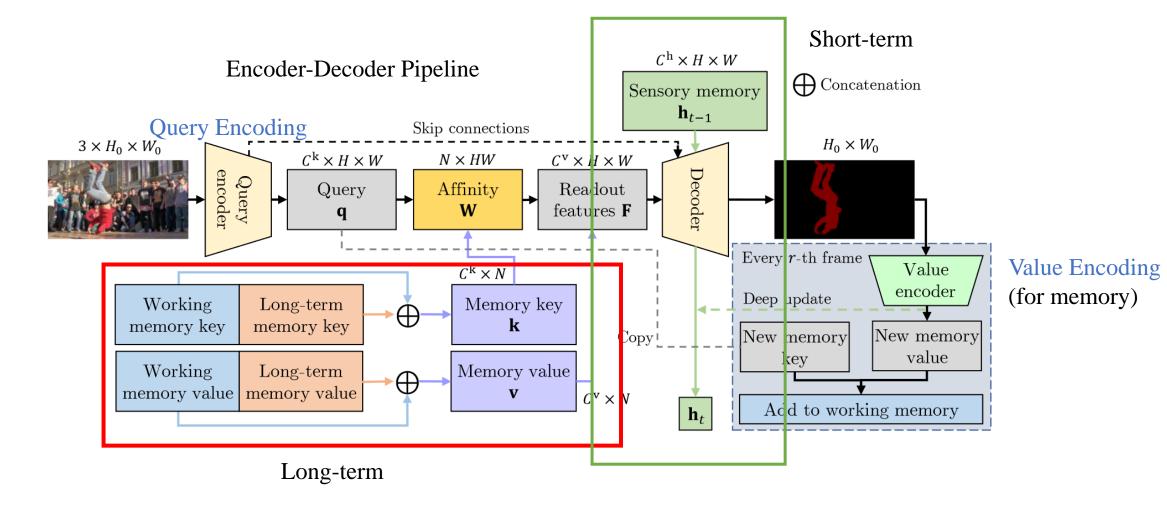
- Problem with long videos
 - Sacrificed segmentation quality
 - **Reason**: The features of the memory frame are compressed and the information is lost
- Problem of memory matching
 - **Recurrent approaches**: Prone to drifting and struggle with occlusions (Low Performance);
 - Attention based: Required large amount of GPU
- Contribution of XMem
 - Architecture (based on Atkinson–Shiffrin memory model) that can handle long video through a Long-Term Memory
 - New **Memory Reading** technic that can obtain good segmentation results while consuming only a small amount of GPU resources

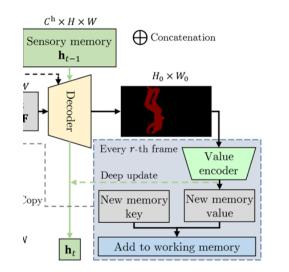


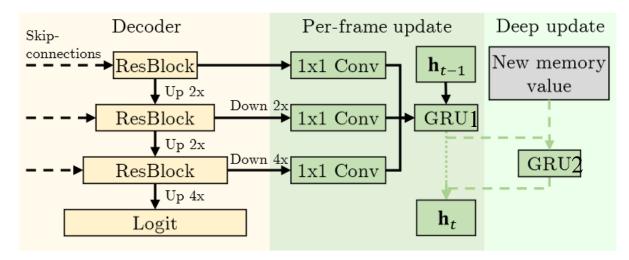

- Inspired by the Atkinson–Shiffrin memory model
 - Sensory memory: Cues used in decoding each frame
 - Working memory: Including only a few frames full memory
 - Long-term memory: Compressed memory of a large amount of frames

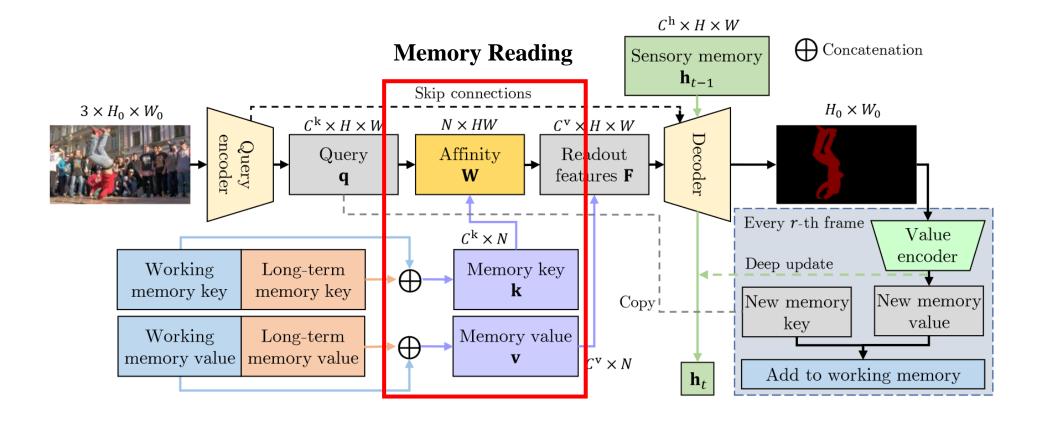

- Inspired by the Atkinson–Shiffrin memory model
 - Sensory memory: Cues used in decoding each frame
 - Working memory: Including only a few frames full memory
 - Long-term memory: Compressed memory of a large amount of frames



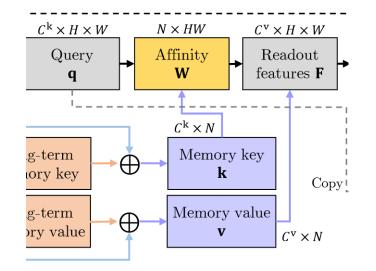

- Inspired by the Atkinson–Shiffrin memory model
 - Sensory memory: Cues used in decoding each frame to improve temporal consistency
 - Working memory: Including only a few frames full memory
 - Long-term memory: Compressed memory of a large amount of frames

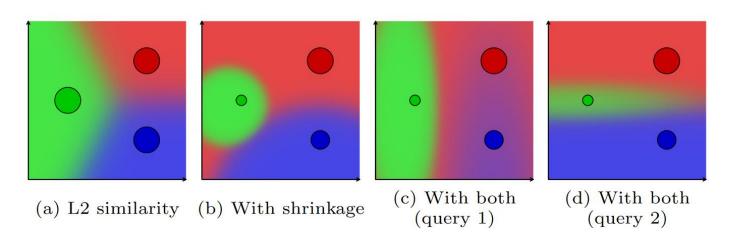

- Inspired by the Atkinson–Shiffrin memory model
 - Sensory memory: Cues used in decoding each frame
 - Working memory: Including only a few frames full memory
 - Long-term memory: Compressed memory of a large amount of frames

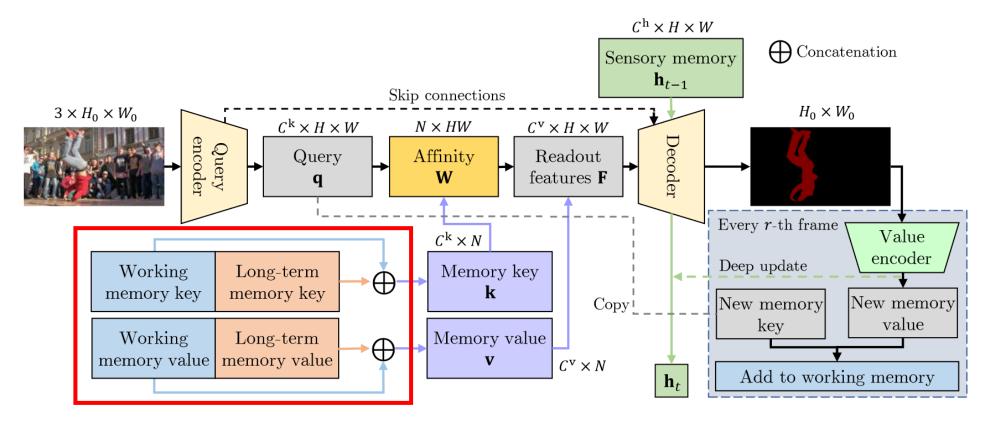




Sensory Memory




- Retains low-level information which nicely complements the lack of temporal locality in the working/long-term memory
- Hidden feature **h** of **GRU1** is updated in each frame (sensory)
- Perform *deep update* every r-th frame using new memory value with **GRU2**. Advantages are:
 - discard redundant information that has already been saved to the working memory;
 - receive updates from a deep network (i.e., the value encoder) with minimal overhead as we are reusing existing features.



$\begin{array}{l} \textbf{Memory Reading} \\ \textbf{F} = \textbf{v} \textbf{W}(\textbf{k}, \textbf{q}). \qquad W(k, q) = Softmax(S(k, q)) \\ \textbf{S}(\textbf{k}, \textbf{q})_{ij} = -\textbf{s}_i \sum_{c}^{C^k} \textbf{e}_{cj} \left(\textbf{k}_{ci} - \textbf{q}_{cj}\right)^2, \\ \textbf{Here, } \textbf{k} \in \mathbb{R}^{C^k \times N} \text{ and } \textbf{v} \in \mathbb{R}^{C^v \times N} \text{ are } C^k\text{- and } C^v\text{-dimensional keys and values} \end{array}$

- *s* directly scales the similarity and explicitly encodes confidence
- *e* controls the relative importance of each channel in the key space such that attention is given to the more discriminative channels

Memory Consolidation

Other Memories

• Working Memory

$$\mathbf{k}^{\mathrm{w}} \in \mathbb{R}^{C^{\mathrm{k}} \times THW} \quad \mathbf{v}^{\mathrm{w}} \in \mathbb{R}^{C^{\mathrm{v}} \times THW}$$

T is the first frame and the last r-1 frames (r = 5)

Cheng, H.K., Tai, Y.W., Tang, C.K.: Modular interactive video object segmen-

- Long-Term Memory
 - Compression 1: $\mathbf{k}^{\rm c}\, \subset\, \mathbf{k}^{\rm w}\,$ and $\, \mathbf{v}^{\rm c}\, \subset\, \mathbf{v}^{\rm w}\, (T1\text{-}Tt\text{-}r)$
 - Compression 2: $\mathbf{k}^{p} \subset \mathbf{k}^{c}$ (Prototype selection), $\mathbf{v}^{p} = \mathbf{v}^{c} \mathbf{W}(\mathbf{k}^{c}, \mathbf{k}^{p})$. (Memory Potentiation)
 - Removing Obsolete Features
 - Introduce a least-frequently-used (LFU) eviction algorithm
 - Selection is also based on **cumulative affinity** (similar to Prototype selection) after top-k filtering[1]

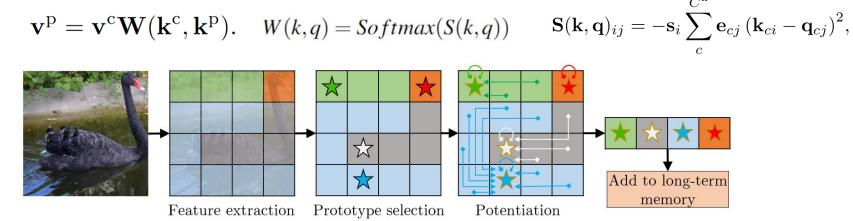
$$\mathbf{k}^{w} \in \mathbb{R}^{C^{k} \times THW} \mathbf{k}^{\text{lt}} \in \mathbb{R}^{C^{k} \times L}$$

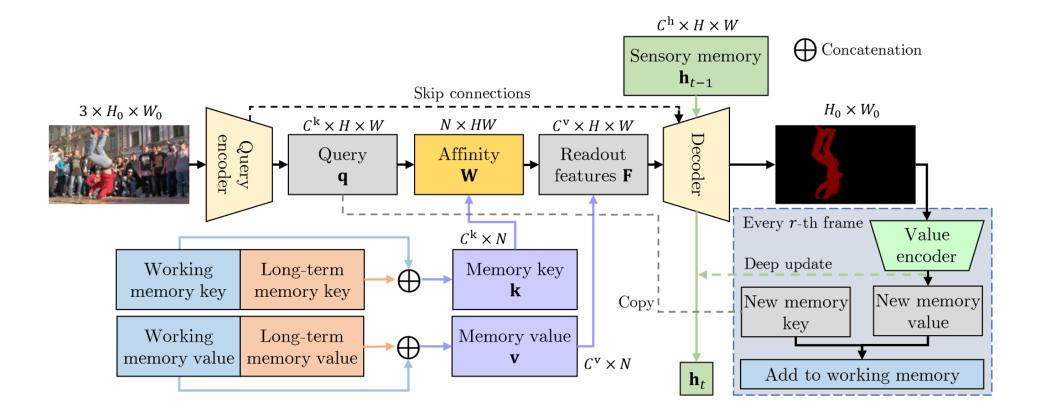
$$\underbrace{Working \\ memory key \\ memory value \\ memory value \\ \mathbf{v}^{w} \in \mathbb{R}^{C^{v} \times THW} \mathbf{v}^{\text{lt}} \in \mathbb{R}^{C^{v} \times L}$$

$$\underbrace{Working \\ Morking \\ memory value \\ \mathbf{v}^{v} \in \mathbb{R}^{C^{v} \times THW} \mathbf{v}^{\text{lt}} \in \mathbb{R}^{C^{v} \times L}$$

$$\underbrace{Working \\ memory value \\ \mathbf{v}^{v} \in \mathbb{R}^{C^{v} \times THW} \mathbf{v}^{\text{lt}} \in \mathbb{R}^{C^{v} \times L}$$

$$\underbrace{Working \\ \mathbf{v}^{v} \in \mathbb{R}^{C^{v} \times THW} \mathbf{v}^{\text{lt}} \in \mathbb{R}^{C^{v} \times L}$$


$$\underbrace{Working \\ \mathbf{v}^{v} \in \mathbb{R}^{C^{v} \times THW} \mathbf{v}^{\text{lt}} \in \mathbb{R}^{C^{v} \times L}$$


$$\underbrace{Working \\ \mathbf{v}^{v} \in \mathbb{R}^{C^{v} \times THW} \mathbf{v}^{\text{lt}} \in \mathbb{R}^{C^{v} \times L}$$

$$\underbrace{Working \\ \mathbf{v}^{v} \in \mathbb{R}^{C^{v} \times THW} \mathbf{v}^{\text{lt}} \in \mathbb{R}^{C^{v} \times L}$$

Long-Term Memory

- Prototype Selection
 - Pick Top-**P** frequently **used** candidates as prototypes $\mathbf{k}^{p} \in \mathbb{R}^{C^{k} \times P}$
 - Usage is defined by its cumulative total affinity in W and normalized by the duration that each candidate is in the working memory
- Memory Potentiation
 - Apply channel-wise potentiation to prevent aliasing
 - The enhancement is achieved by aggregating the affinity pixels of the feature map, and the calculation formula of the similarity matrix can be reused

Experiments Result on Long Videos

Table 1. Quantitative comparisons on the Long-time video dataset [29].										
	Long-	time Vide	o $(1 \times)$	Long-	Long-time Video $(3\times)$					
Method	$\mathcal{J}\&\mathcal{F}$	${\mathcal J}$	\mathcal{F}	$\mathcal{J}\&\mathcal{F}$	${\mathcal J}$	\mathcal{F}	$\overline{\mathcal{J}\&\mathcal{F}}$			
CFBI+ [61]	50.9	47.9	53.8	55.3	54.0	56.5	4.4			
RMNet $[54]$	$59.8{\scriptstyle\pm3.9}$	$59.7{\scriptstyle\pm8.3}$	$60.0{\scriptstyle\pm7.5}$	$57.0{\pm}1.6$	$56.6{\scriptstyle\pm1.5}$	$57.3{\scriptstyle\pm1.8}$	-2.8			
JOINT [33]	$67.1{\scriptstyle\pm3.5}$	$64.5{\scriptstyle\pm4.2}$	$69.6{\scriptstyle\pm3.9}$	$57.7{\scriptstyle\pm0.2}$	$55.7{\scriptstyle\pm0.3}$	$59.7{\scriptstyle\pm0.2}$	-9.4			
CFBI [59]	53.5	50.9	56.1	58.9	57.7	60.1	5.4			
HMMN $[44]$	$81.5{\scriptstyle\pm1.8}$	$79.9{\scriptstyle\pm1.2}$	$83.0{\pm}1.5$	$73.4{\scriptstyle\pm3.3}$	$72.6{\scriptstyle\pm3.1}$	$74.3{\scriptstyle\pm3.5}$	-8.1			
STM [36]	$80.6{\scriptstyle\pm1.3}$	$79.9{\scriptstyle\pm0.9}$	$81.3{\scriptstyle\pm1.0}$	$75.3{\scriptstyle\pm13.0}$	$74.3{\scriptstyle\pm13.0}$	$76.3{\scriptstyle\pm13.1}$	-5.3			
$MiVOS^*$ [8]	$81.1{\scriptstyle\pm3.2}$	$80.2{\scriptstyle\pm2.0}$	$82.0{\scriptstyle\pm3.1}$	$78.5{\scriptstyle\pm4.5}$	$78.0{\scriptstyle\pm3.7}$	$79.0{\scriptstyle\pm5.4}$	-2.6			
AOT [60]	$84.3{\scriptstyle\pm0.7}$	$83.2{\scriptstyle\pm3.2}$	$85.4{\scriptstyle\pm3.3}$	$81.2{\scriptstyle\pm2.5}$	$79.6{\scriptstyle\pm3.0}$	$82.8{\scriptstyle\pm2.1}$	-3.1			
AFB-URR [29]	83.7	82.9	84.5	83.8	82.9	84.6	0.1			
STCN [9]	$87.3{\scriptstyle\pm0.7}$	$85.4{\scriptstyle\pm1.1}$	$89.2{\scriptstyle\pm1.1}$	$84.6{\scriptstyle\pm1.9}$	83.3 ± 1.7	$85.9{\scriptstyle\pm2.2}$	-2.7			
XMem (Ours)	$89.8{\scriptstyle\pm0.2}$	$88.0{\pm}0.2$	$91.6{\pm}0.2$	$\textbf{90.0}{\pm}0.4$	88.2 ± 0.3	$91.8{\pm}0.4$	0.2			

Table 1. Quantitative comparisons on the Long-time Video dataset [29].

Experiments Result on Short Videos

Table 2. Quantitative comparisons on three commonly used short-term datasets. * denotes BL30K [8] pretraining. Bold and underline denote the best and the second-best respectively in each column. † denotes FPS re-timed on our hardware. On YouTubeVOS, we re-run AOT with all input frames (improving its performance) for a fair comparison.

Table3.ResultsonDAVIS2017test-dev.‡: uses 600p videos.

		YT-	-VOS	2018	val $[5]$	7]	DA	VIS 2	2017 v	al [41]	DAV	IS 20	16 va	l [40]		DAV	IS 201	$7 \mathrm{td}$
Method	$\overline{\mathcal{G}}$	\mathcal{J}_s	\mathcal{F}_{s}	\mathcal{J}_{u}	\mathcal{F}_{u}	FPS	$\mathcal{J}\&\mathcal{F}$	${\mathcal J}$	${\cal F}$	FPS	$\mathcal{J}\&\mathcal{F}$	${\mathcal J}$	${\cal F}$	FPS	Method	$\mathcal{J}\&\mathcal{F}$	\mathcal{J}	\mathcal{F}
STM [36] AFB-URR [29] CFBI [59] RMNet [54] HMMN [44] MiVOS* [8] STCN [9] JOINT [33] STCN* [9] AOT [60] XMem (Ours)	$79.6 \\81.4 \\81.5 \\82.6 \\83.0 \\83.1 \\84.3 \\85.5$	$78.8 \\81.1 \\82.1 \\81.1 \\81.9 \\81.5 \\83.2 \\84.5$	$\begin{array}{c} 83.1 \\ 85.8 \\ 85.7 \\ 87.0 \\ 85.6 \\ 86.5 \\ 85.9 \\ 87.9 \\ \underline{89.5} \end{array}$	$78.7 \\ 79.0 \\ 79.6$	$\begin{array}{c} 82.6\\ 83.4\\ 82.4\\ 84.6\\ 86.2\\ 85.7\\ 86.5\\ 87.3\\ 88.2 \end{array}$	- 3.4 - - <u>13.2</u> † - <u>13.2</u> †	$76.9 \\ 81.9 \\ 83.5 \\ 84.7 \\ 84.5 \\ 85.4 \\ 83.5 \\ 85.3 \\ 84.9 \\$	$74.4 \\79.1 \\81.0 \\81.9 \\81.7 \\82.2 \\80.8 \\82.0 \\82.3$	$79.3 \\ 84.6 \\ 86.0 \\ 87.5 \\ 87.4 \\ 88.6 \\ 86.2 \\ 88.6 \\ 87.5 \\ $	5.9 4.4^{\dagger} 9.3^{\dagger} 11.2 20.2^{\dagger}	$ \begin{array}{r} - \\ 89.4 \\ 88.8 \\ 90.8 \\ 91.0 \\ 91.6 \\ - \\ \underline{91.7} \\ 91.1 \\ \end{array} $	- 88.3 88.9 89.6 89.6 90.8 - 90.4 90.1	$ \begin{array}{r} - \\ 90.5 \\ 88.7 \\ 92.0 \\ 92.4 \\ 92.5 \\ - \\ \underline{93.0} \\ 92.1 \\ \end{array} $	$6.2 \\ 11.9 \\ 13.0^{\dagger}$	STM‡ [36] RMNet [54] STCN [9] CFBI+‡ [61] HMMN [44] MiVOS* [8] AOT [60] STCN* [9] XMem (Ours) XMem* (Ours)	$75.0 \\ 76.1 \\ 78.0 \\ 78.6 \\ 78.6 \\ 79.6 \\ 79.9 \\ 81.0$	$\begin{array}{c} 69.3 \\ 71.9 \\ 73.1 \\ 74.4 \\ 74.7 \\ 74.9 \\ 75.9 \\ 76.3 \\ 77.4 \\ 77.6 \end{array}$	$78.1 \\80.0 \\81.6 \\82.5 \\82.2 \\83.3 \\83.5 \\84.5$
XMem [*] (Ours)							$\frac{80.2}{87.7}$				91.5 9 2.0				XMem [*] ‡ (Ours)			

Ablation Studies

Table 4. Ablation on our memory stores. Standard deviations for $L_{1\times}$ are omitted.

Setting	$\mathbf{Y_{18}}$	D_{17}	$\mathrm{L}_{1\times}$	$\mathrm{FPS}_{\mathrm{D17}}$	$\mathrm{FPS}_{\mathrm{Y18}}$
All memory stores No sensory memory No working memory No long-term memory	$84.4 \\ 72.7$	86.2 85.1 77.6 86.3	$87.9 \\ 38.7$	22.6 23.1 31.8 17.6	22.6 23.1 28.1 10.0

Table 5. Ablation on the two scaling terms in memory reading.

Setting	Y_{18}	D_{17}
With both terms	85.7	86.2
With shrinkage \mathbf{s} only	85.1	85.6
With selection \mathbf{e} only	84.8	84.8
With neither	85.0	85.1

Table 6. Comparisons between different Table 7. Comparisons between differentmemory consolidation methods.strategies for handling long videos.

Setting		$L_{3\times}$	Compress ratio	Setting	$L_{1\times}$	$L_{3\times}$	$\Delta_{1\times \to 3\times}$
Random K-means centroid Usage-based		$ \begin{array}{r} & 1.3 \times \\ 89.5 \pm 0.8 \\ 89.5 \pm 0.5 \\ 89.6 \pm 0.4 \\ \end{array} $	$12625\% \\ 1$	Consolidation Eager compression Sparse insertion Local window	$89.8 \pm 0.2 \\87.8 \pm 0.3 \\89.8 \pm 0.4 \\86.2 \pm 1.5$	87.3 ± 1.3 87.3 ± 1.0	-0.5 -2.5
Random K-means centroid Usage-based	P = 128	$\begin{array}{c} 89.7 \pm 0.7 \\ 82.4 \pm 10.3 \\ \textbf{90.0} \pm 0.4 \end{array}$	$6328\%\ 6328\%\ 6328\%$	Table 8. Ablatiquency of sensor			date fre-
Random K-means centroid Usage-based	P = 256	$\begin{array}{c} 89.8 \pm 0.7 \\ 74.5 \pm 17.0 \\ \textbf{90.1} \pm 0.4 \end{array}$	$3164\%\ 3164\%\ 3164\%\ 3164\%$	$\frac{1}{\text{Setting}}$	Y ₁₈	D ₁₇ FI 7 86.2 22	
No potentiation With potentiation		87.9 ± 0.2 90.0 ± 0.4		Every single No deep upd		5 86.1 18 3 85.4 22	