

Vision & Learning Seminar

Instance Segmentation - CVPR2022 Feng Zhu

Instance Segmentation

Segmentation task: instance segmentation, semantic segmentation and panoptic segmentation.

Instance segmentation is the task of **detecting and delineating each distinct object** of interest appearing in an image.

Extend on **object detection**, need to predict masks of each object instead of bounding box.

Semantic segmentation, or image segmentation, is the task of clustering parts of an image together which belong to the same object class.

Image Recognition

Semantic Segmentation

Object Detection

Instance Segmentation

Instance Segmentation - CVPR2022

Trends:

- 1. Less fully-supervised work, more weakly-supervised and self-supervised work.
- 2. More video segmentation work.
- 3. More panoptic segmentation work and 3D instance segmentation work.
- 4. Focused on **boundary refinement** and **speed-up**.
- 5. Open world and open vocabulary instance segmentation, with language (e.g. CLIP).

Instance Segmentation - CVPR2022

Paper sharing:

- 1. AdaMixer: A Fast-Converging Query-Based Object Detector. (oral, detailed)
- 2. Sparse Instance Activation for Real-Time Instance Segmentation. (detailed)

- 3. Mask Transfiner for High-Quality Instance Segmentation. (detailed)
- 4. Pointly-Supervised Instance Segmentation. (oral, brief)
- 5. FreeSOLO: Learning to Segment Objects without Annotations. (brief)

Ziteng Gao¹ Limin Wang¹ Bing Han² Sheng Guo² ¹State Key Laboratory for Novel Software Technology, Nanjing University, China ²MYbank, Ant Group, China

Motivation: The recent query-based object detectors still suffers from slow convergence, limited performance, and design complexity of extra networks between backbone and decoder.

The paper finds the key to these issues is the **adaptability of decoders** for casting queries to varying objects.

Revisit previous query-based method

1. DETR and Deformable DETR can not be adaptive to decode content, linear projection of features;

2. Sparse RCNN use adaptive bbox proposal and dynamic interactive head to decode content, but still restricted to **bbox and specific feature level** of FPN.

	adaptive to decode locations?	adaptive to decode content?	extra networks before the query decoder ¹ ?
DETR [4]	yes, multi-head attention aggregation	no, linear projection	TransformerEncoder
Deformable DETR [56]	<i>yes</i> , multi-scale multi-head adaptive sampling	<i>no</i> , linear projection ²	Multi-scale DeformTransEncoder
Sparse R-CNN [39]	restricted, RoIAlign [17]	partially yes, adaptive point-wise conv.	FPN
AdaMixer (ours)	yes, adaptive 3D sampling	yes, adaptive channel and spatial mixing	linear projection to form 3D feature space

Ideas:

1. The decoder should adaptively decide which features to sample regarding the query, and adpative in both **spaital and scales dimension**.

5

2. How to adaptively decode the features? To capture correlation in **spatial and channel** dimension.

ŻUTS

Figure 2. **3D feature sampling process.** A query first obtains sampling points in the 3D feature space and then perform 3D interpolation on these sampling points.

Figure 3. Adaptive mixing procedure between an object query and sampled features. The object query first generates adaptive mixing weights and then apply these weights to mix sampled features in the channel and spatial dimension. Note that for clarity, we demonstrate adaptive mixing for one sampling group.

6

Method:

1. 3D feature sampling: treat multi-scale feature maps as **3D feature space**, make query able to handle both location and scale variations. (group sampling)

2. Adaptive mixing: channel and spatial mixing to the sampled features with dynamic kernels.

Experiments

detector	epochs	AP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l
FCOS [40]	12	38.7	57.4	41.8	22.9	42.5	50.1
Cascade R-CNN [3]	12	40.4	58.9	44.1	22.8	43.7	54.0
GFocalV2 [22]	12	41.1	58.8	44.9	23.5	44.9	53.3
BorderDet [33]	12	41.4	59.4	44.5	23.6	45.1	54.6
Dynamic Head [8]	12	42.6	60.1	46.4	26.1	46.8	56.0
DETR [4]	12	20.0	36.2	19.3	6.0	20.5	32.2
Deformable DETR [56]	12	35.1	53.6	37.7	18.2	38.5	48.7
Sparse R-CNN [39]	12	37.9	56.0	40.5	20.7	40.0	53.5
AdaMixer (N=100)	12	42.7	61.5	45.9	24.7	45.4	59.2
AdaMixer (N=300)	12	44.1	63.4	47.4	27.0	46.9	59.5
AdaMixer (N=500)	12	45.0	64.2	48.6	27.9	47.8	61.1

Table 3. $1 \times$ training scheme performance on COCO minival set with different detectors and ResNet-50 as backbone.

Fast convergence: 1 X training scheme outperforms SOTA.

Experiments

Ablation Study

adaptive AP AP ₅₀ AP ₇₅ AP ₈ AP _m AP ₄		
loc. cont.	$\begin{array}{ccc} \text{mixing} & \text{AP} \ \text{AP}_{50}\text{AP}_{75}\text{AP}_s \ \text{AP}_m \ \text{AP}_l \end{array}$	pyramid AP AP ₅₀ AP ₇₅ AP _s AP _m AP _l
35.7 55.2 37.8 20.1 38.1 48.8	ACMACM 41.5 60.5 44.3 23.5 44.1 57.4	FPN [24] 42.1 61.0 45.0 24.1 44.8 58.7
✓ 37.3 55.8 39.7 20.7 40.1 50.9	ASMASM 39.8 58.8 42.6 22.8 42.4 56.1	PAFPN [27] 41.7 60.5 44.7 23.5 44.6 58.7
√ 40.4 60.5 43.4 23.0 42.5 56.7	ACMASM 42.7 61.5 45.9 24.7 45.4 59.2	- 42.7 61.5 45.9 24.7 45.4 59.2
√ √ 42.7 61.5 45.9 24.7 45.4 59.2	ASMACM 41.5 60.4 44.5 23.9 44.4 57.1	
(a) Adaptability of decoding sampling lo-	(b) Design in our adaptive mixing proce-	(c) Extra pyramid networks after the
cations and sampled content.	dure.	backbone?
$P_{\rm in}$ AP AP ₅₀ AP ₇₅ AP _s AP _m AP _l	P_{out} AP AP ₅₀ AP ₇₅ AP _s AP _m AP _l	pos. inf. AP $AP_{50}AP_{75}AP_sAP_mAP_l$ sinus. IoF
8 41.2 60.3 44.1 24.0 43.9 57.2	32 41.1 60.0 44.0 24.5 43.6 57.2	41.2 59.6 44.2 23.6 43.5 57.9
16 41.8 60.9 44.5 24.5 44.6 58.4	64 42.1 61.2 45.0 24.0 44.8 57.8	✓ 41.5 59.9 44.3 23.6 44.0 57.8
32 42.7 61.5 45.9 24.7 45.4 59.2	128 42.7 61.5 45.9 24.7 45.4 59.2	✓ 42.2 61.2 45.0 24.8 45.1 58.8
64 42.7 61.5 46.1 24.9 45.5 59.3	256 42.4 61.4 45.5 24.4 45.0 58.7	✓ ✓ 42.7 61.5 45.9 24.7 45.4 59.2
(d) Sampling points $P_{\rm in}$ per group.	(e) Spatial mixing out patterns P_{out} per group	(f) Position information in self-attention

Table 4. AdaMixer ablation experiments with ResNet-50 on MS COCO minival set. Default choice for our model is colored gray

Experiments

SOTA comparison: bbox AP 51.3

detector	backbone	encoder/pyramid net	#epochs	GFLOPs	AP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l
DETR [4]	ResNet-50-DC5	TransformerEnc	500	187	43.3	63.1	45.9	22.5	47.3	61.1
SMCA [13]	ResNet-50	TransformerEnc	50	152	43.7	63.6	47.2	24.2	47.0	60.4
Deformable DETR [56]	ResNet-50	DeformTransEnc	50	173	43.8	62.6	47.7	26.4	47.1	58.0
Sparse R-CNN [39]	ResNet-50	FPN	36	174	45.0	63.4	48.2	26.9	47.2	59.5
Efficient DETR [49]	ResNet-50	DeformTransEnc	36	210	45.1	63.1	49.1	28.3	48.4	59.0
Conditional DETR [31]	ResNet-50-DC5	TransformerEnc	108	195	45.1	65.4	48.5	25.3	49.0	62.2
Anchor DETR [46]	ResNet-50-DC5	DecoupTransEnc	50	151	44.2	64.7	47.5	24.7	48.2	60.6
AdaMixer (ours)	ResNet-50	-	12	132	44.1	63.1	47.8	29.5	47.0	58.8
AdaMixer (ours)	ResNet-50	-	24	132	46.7	65.9	50.5	29.7	49.7	61.5
AdaMixer (ours)	ResNet-50	-	36	132	47.0	66.0	51.1	30.1	50.2	61.8
DETR [4]	ResNet-101-DC5	TransformerEnc	500	253	44.9	64.7	47.7	23.7	49.5	62.3
SMCA [13]	ResNet-101	TransformerEnc	50	218	44.4	65.2	48.0	24.3	48.5	61.0
Sparse R-CNN [39]	ResNet-101	FPN	36	250	46.4	64.6	49.5	28.3	48.3	61.6
Efficient DETR [49]	ResNet-101	DeformTransEnc	36	289	45.7	64.1	49.5	28.2	49.1	60.2
Conditional DETR [31]	ResNet-101-DC5	TransformerEnc	108	262	45.9	66.8	49.5	27.2	50.3	63.3
AdaMixer (ours)	ResNet-101	-	36	208	48.0	67.0	52.4	30.0	51.2	63.7
AdaMixer (ours)	ResNeXt-101-DCN	-	36	214	49.5	68.9	53.9	31.3	52.3	66.3
AdaMixer (ours)	Swin-S	-	36	234	51.3	71.2	55.7	34.2	54.6	67.3

Table 5. Different query-based detector performance on COCO minival set with longer training scheme and single scale testing.

Tianheng Cheng ^{1,2} Xinggang Wang ^{1†} Shaoyu Chen ^{1,2} Wenqiang Zhang ¹ Qian Zhang ² Chang Huang ² Zhaoxiang Zhang ³ Wenyu Liu ¹ ¹ School of EIC, Huazhong University of Science & Technology ² Horizon Robotics ³ Institute of Automation, Chinese Academy of Sciences (CASIA)

Motivation: Previous instance segmentation methods heavily rely on object detection and perform mask prediction based on **bounding boxes or dense centers**, which is quite **time-consuming**. Moreover, the post-processing operation such as NMS takes much time.

This paper aims to design a new segmentation paradigm for **real-time** instance segmentation

Method:

The paper exploits a sparse set of **instance activation maps (IAM)** to highlight informative object regions, which is motivated by CAM widely used in weakly-supervised object localization.

Method:

Method:

Advantages of using IAM:

(1) it highlights **discriminative instance pixels**, suppresses **obstructive pixels**, and conceptually avoids the incorrect instance feature localization problems in center-/region-based methods;

(2) it aggregates instance features from the whole image and offers more contexts;

(3) computing instance features with activation maps is rather **simple without extra operation** like RoI-Align.

13

Additional methods:

(1) Location-Sensitive Features: similar to CoordConv;

(2) IOU-aware Objectness.

Experiments

Comprision with SOTA on COCO

method	backbone	size	FPS	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
MEInst [46]	R-50-FPN	512	24.0	32.2	53.9	33.0	13.9	34.4	48.7
CenterMask [20]	R-50-FPN	600	31.9	32.9	-	-	12.9	34.7	48.7
CondInst [36]	R-50-FPN	800	20.4^{\dagger}	35.4	56.4	37.6	18.4	37.9	46.9
SOLO [40]	R-50-FPN	512	24.4	34.2	55.9	36.0	-	-	-
SOLOv2-Lite [40]	R-50-FPN	448	38.2	34.0	54.0	36.1	10.3	36.3	54.4
SOLOv2-Lite [40]	R-50-DCN-FPN	512	28.2	37.1	57.7	39.7	12.9	40.0	57.4
PolarMask [43]	R-50-FPN	600	21.7^{\dagger}	27.6	47.5	28.3	9.8	30.1	43.1
PolarMask [43]	R-50-FPN	800	17.2^{\dagger}	29.1	49.5	29.7	12.6	31.8	42.3
YOLACT [1]	R-50-FPN	550	50.6	28.2	46.6	29.2	9.2	29.3	44.8
YOLACT [1]	R-101-FPN	700	29.0	31.2	50.6	32.8	12.1	33.3	47.1
YOLACT++ [1]	R-50-DCN-FPN	550	38.6	34.1	53.3	36.2	11.7	36.1	53.6
OrienMask [11]	D-53-FPN	544	42.7	34.8	56.7	36.4	16.0	38.2	47.8
SparseInst	R-50	608	44.6	34.7	55.3	36.6	14.3	36.2	50.7
SparseInst	R-50-DCN	608	41.6	36.8	57.6	38.9	15.0	38.2	55.2
SparseInst	R-50-d	608	42.8	36.1	57.0	38.2	15.0	37.7	53.1
SparseInst	R-50-d-DCN	608	40.0	37.9	59.2	40.2	15.7	39.4	56.9

Experiments

Ablation study

Different network of F_{iam}

\mathcal{F}_{iam}	act.	AP	AP_{50}	AP_{75}	<i>t</i> (ms)
3×3 conv	sigmoid	32.0	51.9	33.5	22.9
3×3 conv	softmax	31.6	51.4	32.9	22.9
1×1 conv	sigmoid	30.8	50.7	32.0	22.4
3×3 conv, ReLU, 3×3 conv	sigmoid	31.9	52.2	33.0	23.6
Group 3×3 conv (2 groups)	sigmoid	32.2	52.3	33.5	23.1
Group 3×3 conv (4 groups)	sigmoid	32.7	53.1	34.0	23.3

\mathcal{F}_{iam}	AP	AP_{50}	AP_{75}	<i>t</i> (ms)
1×1 conv	30.8	50.7	32.0	22.4
3×3 conv	32.0	51.9	33.5	22.9
Group 3×3 conv	32.7	53.1	34.0	23.3
Cross Attention	31.8	51.7	33.1	23.4

Experiments

Visualization of IAM

ŻUTS

Lei Ke^{1,2} Martin Danelljan¹ Xia Li¹ Yu-Wing Tai³ Chi-Keung Tang² Fisher Yu¹ ¹ETH Zurich ^{"2}HKUST ³Kuaishou Technology

Motivation: Two-stage and query-based instance segmentation methods have achieved remarkable results. However, their segmented masks are still very coarse. Large gap between bbox AP and Mask AP.

Accurate mask prediction is highly challenging, due to the need for **high-resolution** deep features, which demands large computational and memory costs.

Method:

1. Identify **incoherent regions (error-prone regions)**, defined by the loss of information when downsampling mask. This paper builds a hierarchical **quadtree** to represent and process the incoherent image pixels at multiple scales.

2. To refine the mask labels of the incoherent quadtree nodes, they design a **refinement network based on the transformer** instead of convolutional networks because they require operating on uniform grids.

Method:

Properties of Incoherent Regions: occupying 43% of all wrongly predicted pixels, while only taking 14% to the corresponding bounding box areas.

Method:

ŻUTS

Experiments

Ablation study

Table 2	2. Effect of the incoherer	nt regions on COCO val set. AF	, B
is evalu	ated Boundary IoU [10]	while AP* uses LVIS annotation	18.
-	Region Type	$ \mathbf{AP} \mathbf{AP}^B \mathbf{AP}^* \mathbf{AP}^*$	

Region Type	AP	AP^B	AP*	AP_{50}^{\star}
Full RoIs (28 $ imes$ 28)	35.5	21.4	38.3	59.5
Boundary regions	36.6	23.8	40.1	60.2
Incoherent regions	37.3	24.2	40.5	60.7
Incoherent regions (w/o L_1)	36.5	23.5	39.8	59.7
Incoherent regions (w/o L_2)	36.8	23.8	40.2	60.1
Incoherent regions (w/o L_3)	36.7	23.6	40.0	59.9

Table 5. Analysis of the quadtree depth on the COCO *val* using R50-FPN as backbone.

Depth	Output size	AP	AP*	$ AP_L $	AP_M	AP _S	FPS
0	28×28	35.2	37.6	50.3	37.7	17.2	12.3
1	28×28	35.5	38.4	50.9	38.1	17.2	10.6
2	56×56	36.2	39.1	51.9	38.7	17.3	8.9
3	112×112	37.3	40.5	52.9	39.5	17.5	7.1
4	224×224	37.1	40.7	53.1	39.3	17.4	5.2

Experiments

Ablation study

 Table 6. Mask Transfiner vs. MLP and CNN Table 7. Efficacy of Transfiner compared

on COCO val set using ResNet-50-FPN.

Model	AP	AP ^B	AP*	$ AP_{50}^{\star}$
CNN (full regions, 56×56)	35.7	21.8	38.7	58.8
MLP (full regions, 56×56)	36.1	23.4	39.2	59.2
MLP (PointRend [28], 112×112)	36.2	23.1	39.1	59.0
MLP (incoherent regions)	36.4	23.7	39.7	59.8
Mask Transfiner (D = 3, H = 4)	37.3	24.2	40.5	60.7
Mask Transfiner (D = 3, H = 8)	37.1	24.1	40.2	60.8
Mask Transfiner (D = 6, H = 4)	37.4	24.4	40.6	60.9

to standard attention models on COCO val. NLA denotes non-local attention [39].

Model	AP	FLOPs (G)	Memory (M)	FPS
NLA [39] (112×112)	36.3	24.6	8347	4.6
NLA [39] (224×224)	36.6	80.2	18091	2.4
Transformer [4] (28×28)	36.1	37.2	4368	6.9
Transformer [4] (56×56)	36.5	68.3	17359	2.1
Mask Transfiner (112×112) Mask Transfiner (224×224)	37.3 37.1	16.8 38.1	2316 4871	7.1 5.2

Experiments

Compare with SOTA on COCO

Method	Backbone	Туре	AP	AP_{val}^{\star}	AP^B_{val}	AP ^{Box}	AP _S	AP_M	AP_L
Mask R-CNN [21]	R50-FPN	Т	37.5	38.2	21.2	41.3	21.1	39.6	48.3
PointRend [28]	R50-FPN	Т	38.1	39.7	23.5	41.5	18.8	40.2	49.4
B-MRCNN [12]	R50-FPN	Т	37.8	39.8	23.5	41.6	19.7	40.3	49.6
BPR [36]	R50-FPN	Т	38.4	40.2	24.3	41.3	20.2	40.5	49.7
Mask Transfiner	R50-FPN	Т	39.4	42.3	26.0	41.8	22.3	41.2	50.2
Mask Transfiner [†]	R50-FPN	Т	40.5	43.1	26.8	43.2	22.8	42.3	52.5
Mask R-CNN [21]	R101-FPN	Т	38.8	39.3	23.1	43.1	21.8	41.4	50.5
PointRend [28]	R101-FPN	Т	39.6	41.4	25.3	43.3	19.8	42.6	53.7
MS R-CNN [†] [24]	R101-FPN	Т	39.6	41.1	25.0	44.1	18.9	42.7	55.1
HTC [6]	R101-FPN	Т	39.7	42.5	25.4	45.9	21.0	42.2	53.5
RefineMask [47]	R101-FPN	Т	39.4	42.3	26.8	43.8	21.6	42.0	53.1
BCNet [26]	R101-FPN	Т	39.8	41.9	26.1	43.5	22.7	42.4	51.1
Mask Transfiner	R101-FPN	Т	40.7	43.6	27.3	43.9	23.1	42.8	53.8
Mask Transfiner [†]	R101-FPN	Т	42.2	45.0	28.6	45.8	24.1	44.8	55.4
ISTR [23]	R50-FPN	Q	38.6	39.5	23.0	46.8	22.1	40.4	50.6
QueryInst [17]	R50-FPN	Q	39.9	42.1	25.1	44.5	22.9	41.7	51.9
SOLQ [15]	R50-FPN	Q	39.7	39.8	23.3	47.8	21.5	42.5	53.1
Mask Transfiner	R50-FPN	Q	41.6	45.4	28.2	46.5	24.2	44.6	55.2

Lei Ke^{1,2} Martin Danelljan¹ Xia Li¹ Yu-Wing Tai³ Chi-Keung Tang² Fisher Yu¹ ¹ETH Zurich ^{"2}HKUST ³Kuaishou Technology

Motivation: Two-stage and query-based instance segmentation methods have achieved remarkable results. However, their segmented masks are still very coarse. Large gap between bbox AP and Mask AP.

Accurate mask prediction is highly challenging, due to the need for **high-resolution** deep features, which demands large computational and memory costs.

Pointly-Supervised Instance Segmentation (oral)

Bowen Chen¹ Omkar Parkhi² Alexander Kirillov²

¹UIUC ²Facebook AI

Motivation: Manual annotation of object masks for training is very **complex and time-consuming**. For example, it takes on **average 79.2 seconds** to create an object mask in COCO, whereas a bounding box can be annotated ~11 times faster in only 7 seconds.

Is **object mask** training data **necessary** to get closer to the fully supervised performance? And is there an easier to collect **annotation form** for the instance segmentation task?

Pointly-Supervised Instance Segmentation (oral)

Bowen Chen¹ Omkar Parkhi² Alexander Kirillov²

¹UIUC ²Facebook AI

Method: randomly sample 10 points inside bbox.

Performance: Mask R-CNN trained on COCO, PASCAL VOC, Cityscapes, and LVIS achieves **94%–98%** of its fully-supervised performance.

FreeSOLO: Learning to Segment Objects without Annotations

Xinlong Wang¹, Zhiding Yu², Shalini De Mello², Jan Kautz², Anima Anandkumar^{2,3}, Chunhua Shen⁴, Jose M. Alvarez²

¹The unversity of Adelaide ²NVIDIA ³Caltech ⁴Zhejiang University

Motivation: Instance segmentation requires **costly annotations** such as bounding boxes and segmentation masks for learning.

27

This paper presents FreeSOLO to explore learning class-agnostic instance segmentation without any annotations.

FreeSOLO: Learning to Segment Objects without Annotations

Method:

propose the Free Mask approach, which leverages the specific design of SOLO to effectively extract coarse object masks and semantic embeddings in an unsupervised manner.
 further propose Self-Supervised SOLO, which takes the coarse masks and semantic embeddings from Free Mask and trains the SOLO model, with several novel design elements to overcome label noise in the coarse masks.

FreeSOLO: Learning to Segment Objects without Annotations

Performance:

FreeSOLO achieves **9.8% AP50** on the challenging COCO dataset, which even outperforms several segmentation proposal methods that use manual annotations.

method	AP ₅₀	AP ₇₅	AP	AR ₁	AR ₁₀	AR ₁₀₀
<i>w/ anns:</i> MCG [61] COB [62]	4.6 8.8	0.8 1.9	1.6 3.3	1.9 2.9	7.4 10.1	18.2 22.7
w/o anns: FreeSOLO	9.8	2.9	4.0	4.1	10.5	12.7

Table 1. Class-agnostic instance segmentation on MS COCOval2017. Both MCG and COB require annotations more or less.