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Instance Segmentation

Segmentation task: instance segmentation, semantic segmentation and panoptic segmentation.

Instance segmentation is the task of detecting Semantic segmentation, or image segmentation, is
and delineating each distinct object of interest the task of clustering parts of an image together which
appearing in an image. belong to the same object class.

Extend on object detection, need to predict masks
of each object instead of bounding box.

Semantic Segmentation

Object Detection Instance Segmentation
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Instance Segmentation - CVPR2022

Trends:

1. Less fully-supervised work, more weakly-supervised and self-supervised work.
2. More video segmentation work.

3. More panoptic segmentation work and 3D instance segmentation work.

4. Focused on boundary refinement and speed-up.

5. Open world and open vocabulary instance segmentation, with language (e.g. CLIP).
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Instance Segmentation - CVPR2022

Paper sharing:

1. AdaMixer: A Fast-Converging Query-Based Object Detector. (oral, detailed)
2. Sparse Instance Activation for Real-TimeInstance Segmentation. (detailed)
3. Mask Transfiner for High-Quality Instance Segmentation. (detailed)

4. Pointly-Supervised Instance Segmentation. (oral, brief)

5. FreeSOLO: Learning to Segment Objects without Annotations. (brief)
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AdaMixer: A Fast-Converging Query-Based Object Detector (oral)

Ziteng Gao! Limin Wang! Bing Han? Sheng Guo?
1State Key Laboratory for Novel Software Technology, Nanjing University, China
MYbank, Ant Group, China

Motivation: The recent query-based object detectors still 50 w67 470
suffers from slow convergence, limited 451
performance, and design complexity of extra networks j‘;

between backbone and decoder. < 30

?:5 25 1
The paper finds the key to these issues is the adaptability § 201 _
of decoders for casting queries to varying objects. © 199 — Adaixer (ours)

10 1 —— Sparse R-CNN
5 - Deform. DETR
DETR
. | 2x 3, | . .
0 20 40 60 80 100

Epoch
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AdaMixer: A Fast-Converging Query-Based Object Detector (oral)

Revisit previous query-based method

1. DETR and Deformable DETR can not be adaptive to decode content, linear projection of features;

2. Sparse RCNN use adaptive bbox proposal and dynamic interactive head to decode content, but still
restricted to bbox and specific feature level of FPN.

adaptive to decode locations?

adaptive to decode content?

extra networks before the query decoder!?

DETR [4]

Deformable DETR [

Sparse R-CNN [
AdaMixer (ours)

ldeas:

]

]

yes, multi-head attention aggregation

yes, multi-scale multi-head adaptive sampling
restricted, RoIAlign [17]

yes, adaptive 3D sampling

no, linear projection
no, linear projection
partially yes, adaptive point-wise conv.

yes, adaptive channel and spatial mixing

2

TransformerEncoder

Multi-scale DeformTransEncoder

FPN

linear projection to form 3D feature space

1. The decoder should adaptively decide which features to sample regarding the query, and adpative in
both spaital and scales dimension.

2. How to adaptively decode the features? To capture correlation in spatial and channel dimension.
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AdaMixer: A Fast-Converging Query-Based Object Detector (oral)
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Figure 2. 3D feature sampling process. A
query first obtains sampling points in the 3D
feature space and then perform 3D interpola-
tion on these sampling points.

Method:

Adaptive mixing
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Figure 3. Adaptive mixing procedure between an object query and sampled features.
The object query first generates adaptive mixing weights and then apply these weights
to mix sampled features in the channel and spatial dimension. Note that for clarity, we
demonstrate adaptive mixing for one sampling group.

1. 3D feature sampling: treat multi-scale feature maps as 3D feature space, make guery able to
handle both location and scale variations. (group sampling)

2. Adaptive mixing: channel and spatial mixing to the sampled features with dynamic kernels.
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AdaMixer: A Fast-Converging Query-Based Object Detector (oral)

Experiments

detector epochs | AP APso AP75 AP, AP,, AP;
FCOS [40] 12 387 574 41.8 229 425 50.1
Cascade R-CNN [3] 12 404 589 441 228 4377 54.0
GFocalV2 [27] 12 41.1 588 449 235 449 533
BorderDet [33] 12 414 594 445 23.6 45.1 54.6
Dynamic Head [5] 12 42.6 60.1 46.4 26.1 468 56.0
DETR [4] 12 20.0 36.2 19.3 6.0 20.5 32.2
Deformable DETR [356] 12 35,1 53.6 37.7 18.2 38.5 48.7
Sparse R-CNN [39] 12 379 560 405 20.7 40.0 535
AdaMixer (N=100) 12 427 61.5 459 247 454 59.2
AdaMixer (N=300) 12 44.1 634 474 27.0 469 595
AdaMixer (N=500) 12 450 642 486 279 478 6l1.1

Table 3. 1x training scheme performance on COCO minival
set with different detectors and ResNet-50 as backbone.

Fast convergence: 1 X training scheme outperforms SOTA.
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AdaMixer: A Fast-Converging Query-Based Object Detector (oral)

Experiments

Ablation Study

adaptive
loc. cont.

AP AP50AP75 AP, AP, AP,

mixing AP APs50AP75 AP: AP, AP,

pyramid AP APs0AP75 APs AP, AP,

v
v
v v

35.7 55.2 37.8 20.1 38.1 48.8
37.3 55.8 39.7 20.7 40.1 50.9
40.4 60.5 43.4 23.0 42.5 56.7
42.7 61.5 45.9 24.7 45.4 59.2

(a) Adaptability of decoding sampling lo-

ACMACM 41.5 60.5 44.3 235 44.1 57.4
ASMASM 39.8 58.8 42.6 22.8 42.4 56.1
ACMASM 42.7 61.5 45.9 24.7 45.4 59.2
ASMACM 41.5 604 44.5 23.9 444 57.1

(b) Design in our adaptive mixing proce-

cations and sampled content. dure.
Pin AP AP50AP75 APs AP, AP, Pouwt AP APs0AP75 APs AP, AP
8 41.2 60.3 44.1 24.0 43.9 57.2 32 41.1 60.0 44.0 24.5 43.6 57.2
16 41.8 60.9 44.5 24.5 44.6 58.4 64 42.1 61.2 45.0 24.0 44.8 57.8
32 427 61.5 459 247 454 59.2 128 42.7 61.5 45.9 24.7 454 59.2
64 42.7 61.5 46.1 24.9 45.5 59.3 256 424 61.4 455 244 45.0 58.7

(d) Sampling points F;;, per group.

(e) Spatial mixing out patterns I, per
group.

FPN [
PAFPN [

pos. inf.
sinus. IoF

]

42.1 61.0 45.0 24.1 44.8 58.7
141.7 60.5 44.7 23.5 44.6 58.7
42.7 61.5 45.9 24.7 454 59.2

(c) Extra pyramid networks after the
backbone?

AP AP50AP75 APs AP, AP,

v
v
v v

41.2 59.6 44.2 23.6 43.5 57.9
41.5 59.9 443 23.6 44.0 57.8
422 61.2 45.0 24.8 45.1 58.8
42.7 61.5 459 24.7 45.4 59.2

(f) Position information in self-attention
between queries.

Table 4. AdaMixer ablation experiments with ResNet-50 on MS COCO minival set. Default choice for our model is colored gray
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AdaMixer: A Fast-Converging Query-Based Object Detector (oral)

Experiments

SOTA comparison: bbox AP 51.3

@

detector backbone encoder/pyramid net | #epochs | GFLOPs | AP AP50 AP75; APs AP, AP
DETR [4] ResNet-50-DC5 TransformerEnc 500 187 433 63.1 459 225 473 6l1.1
SMCA [13] ResNet-50 TransformerEnc 50 152 437 636 472 242 470 604
Deformable DETR [56] ResNet-50 DeformTransEnc 50 173 438 626 477 264 47.1 58.0
Sparse R-CNN [39] ResNet-50 FPN 36 174 450 634 482 269 472 595
Efficient DETR [49] ResNet-50 DeformTransEnc 36 210 45.1 63.1 49.1 28.3 484 59.0
Conditional DETR [31] ResNet-50-DC5 TransformerEnc 108 195 45.1 654 485 253 490 622
Anchor DETR [46] ResNet-50-DC5 DecoupTransEnc 50 151 442 647 475 247 482 60.6
AdaMixer (ours) ResNet-50 - 12 132 441 63.1 478 295 47.0 588
AdaMixer (ours) ResNet-50 - 24 132 46.7 659 50.5 29.7 497 61.5
AdaMixer (ours) ResNet-50 - 36 132 47.0 66.0 51.1 30.1 50.2 61.8
DETR [4] ResNet-101-DC5 TransformerEnc 500 253 449 64.7 477 237 495 623
SMCA [13] ResNet-101 TransformerEnc 50 218 444 652 48.0 243 485 61.0
Sparse R-CNN [39] ResNet-101 FPN 36 250 464 64.6 495 283 483 61.6
Efficient DETR [49] ResNet-101 DeformTransEnc 36 289 457 64.1 495 28.2 49.1 60.2
Conditional DETR [31] | ResNet-101-DC5 TransformerEnc 108 262 459 668 495 272 503 633
AdaMixer (ours) ResNet-101 - 36 208 48,0 67.0 524 30.0 51.2 63.7
AdaMixer (ours) ResNeXt-101-DCN - 36 214 495 689 539 313 523 663
AdaMixer (ours) Swin-S - 36 234 51.3 71.2 557 342 546 67.3

Table 5. Different query-based detector performance on COCO minival set with longer training scheme and single scale testing.
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Sparse Instance Activation for Real-Time Instance Segmentation

Tianheng Cheng 12 Xinggang Wang 't Shaoyu Chen 1.2 Wengiang Zhang !

Qian Zhang ? Chang Huang 2 Zhaoxiang Zhang 2 Wenyu Liu 1

1 School of EIC, Huazhong University of Science & Technology 2 Horizon Robotics
3 Institute of Automation, Chinese Academy of Sciences (CASIA)

Motivation: Previous instance segmentation methods
heavily rely on object detection and perform mask prediction
based on bounding boxes or dense centers, which is quite
time-consuming. Moreover, the post-processing operation
such as NMS takes much time.

This paper aims to design a new segmentation paradigm for
real-time instance segmentation

ZUTS
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Sparse Instance Activation for Real-Time Instance Segmentation

Method:

The paper exploits a sparse set of instance activation maps (IAM) to highlight informative object
regions, which is motivated by CAM widely used in weakly-supervised object localization.
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Sparse Instance Activation for Real-Time Instance Segmentation

Method:

"1 Instance Activation Maps
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Sparse Instance Activation for Real-Time Instance Segmentation

Method:
Advantages of using IAM:

(1) it highlights discriminative instance pixels, suppresses obstructive pixels, and conceptually
avoids the incorrect instance feature localization problems in center-/region-based methods;

(2) it aggregates instance features from the whole image and offers more contexts;

(3) computing instance features with activation maps is rather simplewithout extra operation like
Rol-Align.

Additional methods:
(1) Location-Sensitive Features: similar to CoordConv;,

(2) IOU-aware Objectness.

ZUTS



Sparse Instance Activation for Real-Time Instance Segmentation

Experiments

Comprision with SOTA on COCO

@

method backbone size FPS AP AP5y AP7s | APs APy APL
MElnst [46] R-50-FPN 512 24.0 32.2 539 33.0 139 344  48.7
CenterMask [20] R-50-FPN 600 31.9 32.9 - - 129 347  48.7
CondlInst [36] R-50-FPN 800 20.4' | 354 564 37.6 184 379 469
SOLO [40] R-50-FPN 512 244 342 559 36.0 - - -
SOLOv2-Lite [40] | R-50-FPN 448 38.2 340 540 36.1 10.3 363 544
SOLOv2-Lite [40] | R-50-DCN-FPN | 512 28.2 37.1  57.7 39.7 129 40.0 574
PolarMask [43] R-50-FPN 600 217t | 27.6 475 28.3 9.8 30.1 43.1
PolarMask [43] R-50-FPN 800 17.27 | 29.1 495 29.7 126 31.8 423
YOLACT [1] R-50-FPN 550 50.6 28.2  46.6 29.2 9.2 203 448
YOLACT [1] R-101-FPN 700  29.0 31.2  50.6 32.8 12.1 333  47.1
YOLACT++ [1] R-50-DCN-FPN | 550 38.6 34,1 533 36.2 11.7  36.1 53.6
OrienMask [11] D-53-FPN 544 427 348 56.7 364 | 16.0 382 478
Sparselnst R-50 608 44.6 3477 553 36.6 143 362 50.7
Sparselnst R-50-DCN 608 41.6 36.8 57.6 38.9 15,0 38.2 552
Sparselnst R-50-d 608 42.8 36.1 57.0 38.2 15.0 377 53.1
Sparselnst R-50-d-DCN 608 40.0 379 592 40.2 157 394 569
14



Sparse Instance Activation for Real-Time Instance Segmentation

Experiments
Ablation study
Different network of F,,,

Fiam act. AP APso AP75 | t (ms) Fiam AP APso AP7s5 | (ms)
3% 3 conv sigmoid | 32.0 51.9 33.5 | 229 1x 1 conv 308 507 320 | 22.4

3 x 3 conv softmax | 31.6 514 329 | 229

1x1 conv sigmoid | 30.8 507 32.0 | 22.4 33 conv 320 519335 229

3% 3 conv, ReLU, 3x3 conv | sigmoid | 31.9 522 33.0 | 236 Group 3x3 conv | 32.7 53.1 34.0 | 23.3

Group 3 x 3 conv (2 groups) | sigmoid | 32.2 523 33.5 | 23.1 Cross Attention |31.8 51.7 33.1 | 234

Group 3 x 3 conv (4 groups) | sigmoid | 32.7 53.1 34.0 | 233
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Sparse Instance Activation for Real-Time Instance Segmentation

Experiments

Visualization of IAM
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Mask Transfiner for High-Quality Instance Segmentation

Lei Kel-2 Martin Danelljant Xia Lit Yu-Wing Tai® Chi-Keung Tang? Fisher Yu?!
LETH Zurich " 2HKUST 3Kuaishou Technology

Motivation: Two-stage and query-based instance

. ! Two-stage methods Query-based methods
segmentation methods have achieved remarkable results. e Mask AP ’
However, their segmented masks are still very coarse.
Large gap between bbox AP and Mask AP. &1 82 F’

iz
Accurate mask prediction is highly challenging, due to the ~ l“ Fg T“
need for high-resolution deep features, which demands .
. Mask R-CNN BMask R-CNN PointRend Mask Transfiner = SOL ISTR Mask Transtiner
large computational and memory costs. (Ours : (ours
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Mask Transfiner for High-Quality Instance Segmentation

Method:

Quadtree on Sequential
Incoherent Regions Quadtree Nodes

Input Image

1. Identify incoherent regions (error-prone regions),

defined by the loss of information when downsampling —

mask. This paper builds a hierarchical quadtree to el | e

represent and process the incoherent image pixels at TR R 1

multiple scales. =

2. To refine the mask labels of the incoherent quadtree o B

nodes, they design a refinement network based on Coarse Mask _ e _

the transformer instead of convolutional networks ‘ E( o | Sl st et Ao W g,

because they require operating on uniform grids. E L e J .
I Final Mask Quadtree Transformer

Sequentiﬁ/lask Labels
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Mask Transfiner for High-Quality Instance Segmentation

Method:

Properties of Incoherent Regions: occupying 43% of all wrongly predicted pixels, while only taking
14% to the corresponding bounding box areas.

Input Object Mask X,y Compressed Object Mask Recovered Object Mask

Fy
Up-sampling

Percent | Recallg, | Acc | APgr | APcoarse

Down-sampling

14% | 43% | 56% | 51.0 | 355

SN

i
H

Residue Differences D Incoherent Regions
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Mask Transfiner for High-Quality Instance Segmentation

Method:

Box Head

Box Proposals

[y

Coarse Mask Head

28x28

Backbone

Input Image

Prediction

ROI Align
28x28

-
>

Coarse Masks

Node Encoder

T

Fine Coarse Context

Fused
[ i

L
Positional
[ Eanbeding
F 3

ood--gooo

Sequential Prediction Encoded Sequence

UTS
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z, ROIAlign
56x56
ROI Align |
12x112
FPN
| O] .
Pixel Decoder B Sequence Encoder
[
- sat|[ Multi-head ||
I i - | FEN L %8| 1-head |[*]
I * |:| ‘ Norm [| Aftention -ﬁ
MLP ] 3
O

Incoherent Query Sequence

:r Coarse Masks ROI Feature

28x28

H{{ FCN
Up-sample
L 56x56

Up-sample
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112=112

=
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Mask Transfiner for High-Quality Instance Segmentation

Experiments

Ablation study

Table 2. Effect of the incoherent regions on COCO val set. APP Table 5. Analysis of the quadtree depth on the
is evaluated Boundary IoU [10] while AP* uses LVIS annotations. COCO val usin g R50-FPN as backbone

Region Type ‘ AP | APB | AP~* ‘ APz,
Depth | Outputsize | AP | AP* | AP, | APy, | APg | FPS

Full Rols (28 x 28) 355 | 214 | 383 | 595
Boundary regions 36.6 | 23.8 | 40.1 | 60.2 0 | 28x28 |352]376]503 | 377 | 17.2 | 123
Incoherent regions 37.3 24.2 40.5 60.7 1 28«28 35.5 384 50.9 381 17.2 10.6
Incoherent regions (w/o L) | 36.5 | 23.5 | 39.8 | 59.7 2 56x56 36.2 | 39.1 | 51.9 | 38.7 | 17.3 | 89
Incoherent regions (w/o L) | 36.8 | 23.8 | 40.2 | 60.1 3 112x112 | 37.3 | 405 | 529 | 395 | 175 | 7.1
Incoherent regions (w/o L3) | 36.7 | 23.6 | 40.0 | 59.9 4 224x224 | 37.1 | 40.7 | 53.1 | 393 | 174 | 5.2
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Mask Transfiner for High-Quality Instance Segmentation

Experiments

Ablation study

Table 6. Mask Transfiner vs. MLP and CNN Table 7. Efficacy of Transfiner compared
on COCO val set using ResNet-50-FPN.  to standard attention models on COCO val.

Vodel “ap | ap? | ap- | ap;,  NLA denotes non-local attention [39].

CNN (full regions, 56 x 56) ‘ 35.7 ‘ 21.8 ‘ 38.7 | 58.8 Model ‘ AP ‘ FLOPs (G) | Memory (M) | FPS
MLP (full regions, 56 x 56) 36.1 | 234 | 39.2 | 59.2 NLA [39] (112x112) 36.3 24.6 8347 4.6
MLP (PointRend [25], 112 x 112) | 36.2 | 23.1 | 39.1 | 59.0 NLA [29] (224 x224) 36.6 80.2 18091 2.4
MLP (incoherent regions) 364 | 23.7 | 39.7 | 598 Transformer [4] (28%28) 36.1 372 4368 6.9
Mask Transfiner (D =3, H =4) 373 | 24.2 | 40.5 | 60.7 Transformer [] (56x56) 36.5 68.3 17359 2.1
Mask Transfiner (D = 3, H = 8) 37.1 | 24.1 | 40.2 | 60.8 Mask Transfiner (112x112) | 37.3 16.8 2316 7.1
Mask Transfiner (D =6, H=4) 374 | 244 | 40.6 | 60.9 Mask Transfiner (224x224) | 37.1 38.1 4871 5.2
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Mask Transfiner for High-Quality Instance Segmentation

Experiments

Compare with SOTA on COCO

@

UTS

Method Backbone | Type | AP | AP;, APy, | AP®>* | APs APy APL
Mask R-CNN [21] | R50-FPN T [375] 382 212 | 413 | 21.1 39.6 483
PointRend [22] R50-FPN T | 381 ] 397 235 | 415 | 188 402 494
B-MRCNN [17] R50-FPN T |378 | 398 235 | 41.6 | 197 403 496
BPR [36] R50-FPN T | 384 | 402 243 | 413 | 202 405 497
Mask Transfiner R50-FPN T | 394 | 423 260 | 418 | 223 412 502
Mask Transfiner! | R50-FPN T |405 | 431 268 | 432 | 228 423 525
Mask R-CNN[21] | RI0I-FPN | T [ 388 | 393 23.1 | 431 | 218 414 505
PointRend [2£] RIOI-FPN | T | 396 | 414 253 | 433 | 198 426 53.7
MS R-CNNf [24] | R1I01-FPN | T | 39.6 | 41.1 250 | 441 | 189 427 55.1
HTC [6] RIOI-FPN | T | 397 | 425 254 | 459 | 210 422 535
RefineMask [47] RIOI-FPN | T | 394 | 423 268 | 438 | 21.6 420 53.1
BCNet [26] RIOI-FPN | T | 39.8 | 419 261 | 435 | 227 424 51.1
Mask Transfiner RIOI-FPN | T | 40.7 | 436 273 | 439 | 23.1 428 538
Mask Transfiner’ | RI0OI-FPN | T | 422 | 450 28.6 | 458 | 241 448 554
ISTR [23] R50-FPN Q [386] 395 230 | 468 [ 22.1 404 506
Querylnst [17] R50-FPN Q | 399 | 421 251 | 445 | 229 417 519
SOLQ [15] R50-FPN Q |397| 398 233 | 478 | 21.5 425 53.1
Mask Transfiner | R50-FPN Q | 41.6 | 454 282 | 465 | 242 446 552
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Mask Transfiner for High-Quality Instance Segmentation

Lei Kel-2 Martin Danelljant Xia Lit Yu-Wing Tai® Chi-Keung Tang? Fisher Yu?!
LETH Zurich " 2HKUST 3Kuaishou Technology

Motivation: Two-stage and query-based instance

. ! Two-stage methods Query-based methods
segmentation methods have achieved remarkable results. e Mask AP ’
However, their segmented masks are still very coarse.
Large gap between bbox AP and Mask AP. &1 82 F’

iz
Accurate mask prediction is highly challenging, due to the ~ l“ Fg T“
need for high-resolution deep features, which demands .
. Mask R-CNN BMask R-CNN PointRend Mask Transfiner = SOL ISTR Mask Transtiner
large computational and memory costs. (Ours : (ours
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Pointly-Supervised Instance Segmentation (oral)

Bowen Chen! Omkar Parkhi? Alexander Kirillov2

1UIUC 2Facebook Al

Motivation: Manual annotation of object masks for
training is very complex and time-consuming. For
example, it takes on average 79.2 seconds to create
an object mask in COCO, whereas a bounding box can
be annotated ~11 times faster in only 7 seconds.

Is object mask training data necessary to get closer
to the fully supervised performance? And is there an
easier to collect annotation form for the instance
segmentation task?

ZUTS : =



Pointly-Supervised Instance Segmentation (oral)

Bowen Chen! Omkar Parkhi? Alexander Kirillov?

1UIUC 2Facebook Al

Method: randomly sample 10 points inside bbox.

Performance: Mask R-CNN trained

on COCO, PASCAL VOC, Cityscapes, and
LVIS achieves 94%—98% of its fully-supervised
performance.

FUTS .



FreeSOLO: Learning to Segment Objects without Annotations

Xinlong Wang?, Zhiding Yu?, Shalini De Mello?, Jan Kautz?, Anima Anandkumar?3, Chunhua
Shen*,Jose M. Alvarez?

1The unversity of Adelaide 2NVIDIA 3Caltech 4Zhejiang University

Motivation: Instance segmentation requires costly annotations such as bounding boxes and
segmentation masks for learning.

This paper presents FreeSOLO to explore learning class-agnostic instance segmentation
without any annotations.
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FreeSOLO: Learning to Segment Objects without Annotations

Method:

1.propose the Free Mask approach, which leverages the specific design of SOLO to effectively
extract coarse object masks and semantic embeddings in an unsupervised manner.

2. further propose Self-Supervised SOLO, which takes the coarse masks and semantic
embeddings from Free Mask and trains the SOLO model, with several novel design elements
to overcome label noise in the coarse masks.

SOLO

A set of unlabeled images Coarse masks Final masks

ZUTS 28



FreeSOLO: Learning to Segment Objects without Annotations

Performance;

FreeSOLO achieves 9.8% AP50 on the challenging COCO dataset, which even outperforms
several segmentation proposal methods that use manual annotations.

method AP 50 APjr 5 AP AR 1 AR 10 AR 100
w/ anns.:

MCG [61] 4.6 0.8 1.6 1.9 7.4 18.2
COB [62] 8.8 1.9 3.3 2.9 10.1 22.7
W/0 anns:

FreeSOLO 9.8 2.9 4.0 4.1 10.5 12.7

Table 1. Class-agnostic instance segmentation on MS COCO
val2017. Both MCG and COB require annotations more or less.
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