Video Object Segmentation & Video Instance Segmentation

Video Object Segmentation using Space-Time Memory Networks

Fast End-to-End Embedding Learning for Video Object Segmentation

Collaborative Video Object Segmentation by Multi-Scale

Foreground-Background Integration

Video Instance Segmentation

Video Object Segmentation (视频对象分割)

- Target
 - 将前景对象与背景区域进行分离的二值标记

Unsupervised

- 不需要任何手动注释
- 通常基于物体运动与周围环境不同进行分割

- Semi-supervised
 - •利用第一帧的Mask 跟踪和分割给定的对象

二者都将目标对象视为一般对象,而不关心语义类别

• DAVIS(CVPR2016)

- DAVIS-2016数据集为单对象分割数据集,包含30个训练集,20个验证集
- DAVIS-2017数据集为**多对象**分割数据集,一共有90个视频序列,包含60个训练视频,30个验证视频,验证集含59个对象组成

O Dataset

• Youtube-VOS (for Video Object Segmentation)

- 由4453个高分辨率的YouTube视频和94个常用对象类别组成。
- 验证集由474个视频组成,包括91个对象类别,其中65个为训练集中类别,其余26个为不可见类别对象。
- 每个视频的长度约为3到6秒。
- 30fps的帧速率每5帧手动跟踪对象边界
- Youtube-VIS(ICCV2019) (for Video Instance Segmentation)
 - 由2883个高分辨率的YouTube视频组成,含40个类别的标签集

Video frames

Video instance annotations

Metrics – (A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation)

- Region Similarity J (区域相似度) $\mathcal{J} = \frac{|M \cap G|}{|M \cup G|}$
- Contour Accuracy F (轮廓精确度)

将Mask 看成一系列闭合轮廓的集合,并计算基于轮廓的 F 度量

$$\mathcal{F} = \frac{2P_c R_c}{P_c + R_c} \qquad \qquad P_c = \frac{TP}{TP + FN} \\ R_c = \frac{TP}{TP + FP}$$

חידי

• ICCV2019

Motivation

- Available cues (e.g. video frame(s) with object masks) become richer.
- However, the existing methods are unable to fully exploit this rich source of information.

Contribution

• Propose a novel solution for semi-supervised video object segmentation leveraging memory networks

- Overview of the framework
 - 2 parts : previous frame with mask and current frame
 - 4 feature maps : Key feature maps(2) + value feature maps(2)

Encoder Networks

 $\mathbf{k}^{M} \in \mathbb{R}^{T \times H \times W \times C/8}$ $\mathbf{v}^{M} \in \mathbb{R}^{T \times H \times W \times C/2}$

 $\mathbf{k}^{Q} \in \mathbb{R}^{H \times W \times C/8}$ $\mathbf{v}^{Q} \in \mathbb{R}^{H \times W \times C/2}$

STM Read

- Soft weights are first computed by measuring the similarities between all pixels of the query key map.
- Extract information from \boldsymbol{v}^{M} .
- Concat $oldsymbol{v}^M$ and $oldsymbol{v}^Q$.

• Decoder

- The read output is first compressed to have 256 channels by a convolutional layer and a residual block.
- A number of refinement modules upscale the feature map by a factor of two.
- The decoder estimates the mask in 1/4 scale of the input image.

• 2 Stage Training

• 1)Pre-training on images:

A video clip that consists of 3 frames is generated by applying random affine transforms

• 2)Main training on videos.

Sample 3 temporally ordered frames from Youtube-VOS or DAVIS-2017. The maximum number of frames to be skipped is gradually increased from 0 to 25.

• Inference

- The **first and the previous frame** with object masks are the most important.
- For the intermediate frames, we simply save a new memory frame every 5 frames.

- The training process is more complicated, need large image data sets
- Multi-object Segmentation need a post-processing step

Variants	Youtube-VOS	DAVIS-2017	
	Overall	\mathcal{J}	\mathcal{F}
Pre-training only	69.1	57.9	62.1
Main-training only	68.2	38.1	47.9
Full training	79.4	69.2	74.0

• CVPR 2019

Motivation

• Many of the recent successful methods for video object segmentation (VOS) are overly complicated

Contribution

- Design a **simple, fast, end-to-end, strong** Network without fine-turning
- The network only need one-stage training and can handle Multi-object Segmentation without postprocessing step

Overview of the framework

- Backbone features
- Local matching distance map

• 1. Backbone feature map

• DeepLab v3+

depthwise separable convolutions (深度可分离卷积)

batch normalization

Atrous Spatial Pyramid Pooling

The **depthwise separable convolutions** divide the original convolution layer into two parts, which can achieve the same purpose and reduce the number of parameters

 $N_{conv} = 4 * 3 * 3 * 3 = 108$

• 2. Global Matching and Local Matching

Embedding feature vectors

- 3x3 conv + 1x1 conv
- Channel = 100

$$d(p,q) = 1 - \frac{2}{1 + \exp(\|e_p - e_q\|^2)}.$$

c (i,j) https://Hg.csdn.net/qq_34914551

p和q来自不同的输入。根据q的不同,计算两种distance map: Global distance map和 Local distance map

- Semantic Embedding.
 - Global Matching

 $G_{t,o}(p) = \min_{q \in \mathcal{P}_{1,o}} d(p,q).$

Local Previous Frame Matching

$$\hat{G}_{t,o}(p) = \begin{cases} \min_{q \in \mathbf{\mathcal{P}}_{t-1,o}} d(p,q) & \text{if } \mathcal{P}_{t-1,o} \neq \emptyset \\ 1 & \text{otherwise} \end{cases}$$

Previous Frame

A given window size K, we only comprises $(2 * K + 1)^2$ elements

$$L_{t,o}(p) = \begin{cases} \min_{q \in \mathcal{P}_{t=1,o}^{p}} d(p,q) & \text{if } \mathcal{P}_{t-1,o}^{p} \neq \emptyset \\ 1 & \text{otherwise,} \end{cases}$$

• 3. Previous Frame Predictions

Dynamic Segmentation Head

• Training Details

• Backbone

Using weights for DeepLabv3+ which were pre-trained on COCO

Global Matching

Randomly subsample the pixels from the first frame to contain at most 1024 pixels per object

- Local Previous Frame Matching
 - K = 15
- Dataset
 - 3 frames
 - DAVIS 2017 training set (60 videos) and YouTube-VOS training set (3471 videos).
- Loss

Bootstrapped cross entropy loss, which only takes into account the 15% hardest pixels for calculating the loss

	FF-GM	PF-LM	PF-GM	PFP	\mathcal{J}	${\mathcal F}$	$\mathcal{J}\&\mathcal{F}$
1	✓	1		~	65.9	72.3	69.1
2	1		1	1	61.2	67.3	64.2
3	✓			1	49.9	59.8	54.9
4	✓				47.3	57.9	52.6
5	✓	✓			60.4	66.2	63.3
6		1		✓	53.8	58.3	56.1

(ours)

Motivation

Background should be equally treated

Contribution

- Global Matching and Local Matching Forground and background Pixel-level matching and instance-level embedding
- FPN multiscale matching.
- A Atrous Matching (AM) algorithm, which can significantly save computation and memory usage of matching processes.

• Collaborative Pixel-level Matching

$$D(p,q) = \begin{cases} 1 - \frac{2}{1 + exp(||e_p - e_q||^2 + b_B)} & \text{if } q \in B_t \\ 1 - \frac{2}{1 + exp(||e_p - e_q||^2 + b_F)} & \text{if } q \in F_t \end{cases}$$

 b_B and b_F are trainable background bias and foreground bias

Compared with FEELVOS

$$d(p,q) = 1 - \frac{2}{1 + \exp(\|e_p - e_q\|^2)}. \qquad L_{t,o}(p) = \begin{cases} \min_{q \in \mathcal{P}_{t-1,o}^p} d(p,q) & \text{if } \mathcal{P}_{t-1,o}^p \neq \emptyset\\ 1 & \text{otherwise,} \end{cases}$$

- Collaborative Pixel-level Matching
 - Foreground-Background Global Matching (from t = 0 frame)

 $G_o(p) = \min_{q \in \mathcal{P}_{1,o}} D(p,q).$

$$\overline{G}_o(p) = \min_{q \in \overline{\mathcal{P}}_{1,o}} D(p,q).$$

- Collaborative Pixel-level Matching
 - Foreground-Background Multi-Local Matching (from t = T-1 frame)

 $ML_{T,o}(p,K) = \{L_{T,o}(p,k_1), L_{T,o}(p,k_2), ..., L_{T,o}(p,k_n)\},\$

$$L_{T,o}(p,k) = \begin{cases} \min_{q \in \mathcal{P}_{T-1,o}^{p,k}} D_{T-1}(p,q) & \text{if } \mathcal{P}_{T-1,o}^{p,k} \neq \emptyset \\ 1 & \text{otherwise} \end{cases}.$$

$$\overline{ML}_{T,o}(p,K) = \{\overline{L}_{T,o}(p,k_1), \overline{L}_{T,o}(p,k_2), ..., \overline{L}_{T,o}(p,k_n)\},\$$

$$\overline{L}_{T,o}(p,k) = \begin{cases} \min_{q \in \overline{\mathcal{P}}_{T-1,o}^{p,k}} D_{T-1}(p,q) & \text{if } \overline{\mathcal{P}}_{T-1,o}^{p,k} \neq \emptyset \\ 1 & \text{otherwise} \end{cases}$$

- Collaborative Instance-level Attention
 - Get guidance vector

- Collaborative Instance-level Attention
 - Attention mechanism
 - 1. Concat the guidance vector
 - 2. a fully-connected (FC) layer
 - 3. a non-linear activation function
 - 4. Give each channel a weight

Leverage a full scale of foreground-background information to guide the prediction further

- 03 CFBI: Collaborative Video Object Segmentation by Multi-Scale Foreground-Background Integration
 - An overview of CFBI

Backbone 的feature
前一帧的Mask
Local Matching
Global Matching

• Multi-scale Matching(CFBI+)

strides	Channel	Window sizes
4	32	{4, 8, 12, 16, 20, 24}
8	64	{2, 4, 6, 8, 10, 12}
16	128	{4, 6, 8, 10}

• Atrous Matching (AM)

• Training details

TABLE 4

Ablation of background embedding on the DAVIS-2017 validation split. P and I denote the pixel-level matching and instance-level attention, respectively. *: removing the foreground and background bias.

Р	Ι	Avg	$\mathcal J$	${\cal F}$
\checkmark	\checkmark	74.9	72.1	77.7
√*	\checkmark	72.8	69.5	76.1
\checkmark		73.0	69.9	76.0
	\checkmark	72.3	69.1	75.4
		70.9	68.2	73.6

TABLE 5

Ablation of atrous matching. We evaluate the speed and performance of CFBI on the YouTube-VOS validation split using different atrous matching factors (l). l = 1 is equivalent to original matching.

l	1	2	3	4		
	Global Matching					
Avg t/s	81.4 0.29	81.3 0.15	80.7 0.13	79.9 0.12		
Multi-local Matching						
Avg t/s	81.4 0.29	80.8 0.26	80.1 0.25	79.5 0.25		

ICCV2019Contribution

• 1) A new computer vision task

- The goal of this new task is simultaneous **detection**, **segmentation and tracking** of instances in videos
- 2) Propose a large-scale benchmark called YouTube-VIS
 - Based on YouTube-VOS
 - 2883 high-resolution videos and 40 common categories.
- 3) Propose a novel algorithm called MaskTrack R-CNN for this task
 - A tracking branch to Mask R-CNN to jointly perform the detection, segmentation and tracking tasks simultaneously.

• An overview of MaskTrack R-CNN

New Tracking Branch

• Two fully connected layers.

The first fully connected layer transforms the 7 \times 7 \times 256 input feature maps to 1-D 1024 dimensions. The second fully connected layer also maps its input to 1-D 1024 dimensions.

Combining Other Cues

 $v_i(n) = \log p_i(n) + \alpha \log s_i + \beta \text{IoU}(b_i, b_n) + \gamma \delta(c_i, c_n)$

 b_i , c_i and s_i denote its bounding box prediction, category label and detection score

Evaluation Metrics

• 1) IoU

$$\operatorname{IoU}(i,j) = \frac{\sum_{t=1}^{T} |\mathbf{m}_{t}^{i} \cap \tilde{\mathbf{m}}_{t}^{j}|}{\sum_{t=1}^{T} |\mathbf{m}_{t}^{i} \cup \tilde{\mathbf{m}}_{t}^{j}|}$$

- 2) AP(average precision)
 - AP is averaged over multiple intersection-over-union (IoU) thresholds
 - IoU thresholds : 10 IoU thresholds from 50% to 95% at step 5%
- 3) AR(average recall)
 - AR is defined as the maximum recall given some fixed number of segmented instances per video.