Self-Supervised Learning

韩坤洋

Self-Supervised Learning

Segmentation

- Task: predict logits mask (supervised)
 - Image -> Semantic information -> logits mask prediction
- Self-supervised task, in unlabeled dataset
 - Image -> Semantic information
- Predict logits mask, use conv layers
 - Semantic information -> logits mask prediction

Self-Supervised Learning

• Distortion

• Patches

• Rotation

Paper list

- Momentum Contrast for Unsupervised Visual Representation Learning
- Improved Baselines with Momentum Contrastive Learning
- Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning
- Exploring Simple Siamese Representation Learning

Momentum Contrast for Unsupervised Visual Representation Learning

• Mechanism for building dynamic dictionaries for contrastive learning

MoCo - Dictionary Look-up

- Keys in the dictionaries
 - Sample from data, images or patches
 - Represented by encoder network
- Encoded 'query'
 - Similar to its matching 'key'
 - Dissimilar to others
- Loss

$$\mathcal{L}_q = -\log \frac{\exp(q \cdot k_+ / \tau)}{\sum_{i=0}^{K} \exp(q \cdot k_i / \tau)}$$

MoCo - Momentum Contrast

• Dictionary as a queue

- Dictionary can be much larger than batch size
- Current enqueued, oldest dequeued

• Momentum update

- Hard to train key encoder, because large dict
- Update key encoder param by:

 $\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}.$

MoCo - Details

- ResNet as backbone
 - 128-D vector as output, L2-norm
- Transform
 - Resize and 224 x 224-pixel crop
 - Color jitter, horizontal flip, grayscale conversion
- Shuffling BN, BN performs bad
 - Intra-batch communication leaks information
 - Shuffle the sample order before key encoder

MoCo - Details

- Dataset
 - ImageNet-1M, 1.28 million images, 1000 classes
 - Instagram-1B, 940 million images, 1500 hashtags
- Train
 - SGD
 - IN-1M, 256 batch size in 8 GPUs, 53 hours
 - IG-1B, 1024 batch size in 64 GPUs, 6 days

MoCo - Experiment

method	architecture	#params (M)	accuracy (%)
Exemplar [17]	$R50w3 \times$	211	46.0 [38]
RelativePosition [13]	$R50w2 \times$	94	51.4 [38]
Jigsaw [45]	$R50w2 \times$	94	44.6 [38]
Rotation [19]	$Rv50w4 \times$	86	55.4 [38]
Colorization [64]	R101*	28	39.6 [14]
DeepCluster [3]	VGG [53]	15	48.4 [4]
BigBiGAN [16]	R50	24	56.6
	$Rv50w4 \times$	86	61.3
methods based on cont	trastive learning	follow:	
InstDisc [61]	R50	24	54.0
LocalAgg [66]	R50	24	58.8
CPC v1 [46]	R101*	28	48.7
CPC v2 [35]	R170 [*] _{wider}	303	65.9
CMC [56]	R50 _{L+ab}	47	64.1^{\dagger}
	$R50w2 \times L+ab$	188	68.4^{\dagger}
AMDIM [2]	AMDIM _{small}	194	63.5 [†]
	AMDIM _{large}	626	68.1 [†]
МоСо	R50	24	60.6
	RX50	46	63.9
	$R50w2 \times$	94	65.4
	$R50w4 \times$	375	68.6

Table 1. Comparison under the linear classification protocol on ImageNet. The figure visualizes the table. All are reported as unsupervised pre-training on the ImageNet-1M training set, followed by supervised linear classification trained on frozen features, evaluated on the validation set. The parameter counts are those of the feature extractors. We compare with improved reimplementations if available (referenced after the numbers).

Notations: R101*/R170* is ResNet-101/170 with the last residual stage removed [14, 46, 35], and R170 is made wider [35]; Rv50 is a reversible net [23], RX50 is ResNeXt-50-32×8d [62].

[†]: *Pre-training uses FastAutoAugment* [40] *that is supervised by ImageNet labels.*

MoCo - Experiment

pre-train	AP ₅₀	AP	AP ₇₅
random init.	64.4	37.9	38.6
super. IN-1M	81.4	54.0	59.1
MoCo IN-1M	81.1 (-0.3)	54.6 (+0.6)	59.9 (+0.8)
MoCo IG-1B	81.6 (+0.2)	55.5 (+ 1.5)	61.2 (+ 2.1)

(a) Faster R-CNN, R50-dilated-C5

pre-train	AP ₅₀	AP	AP ₇₅
random init.	60.2	33.8	33.1
super. IN-1M	81.3	53.5	58.8
MoCo IN-1M	81.5 (+0.2)	55.9 (+2.4)	62.6 (+3.8)
MoCo IG-1B	82.2 (+0.9)	57.2 (+3.7)	63.7 (+ 4.9)

(b) Faster R-CNN, R50-C4

Table 2. Object detection fine-tuned on PASCAL VOC trainval07+12. Evaluation is on test2007: AP₅₀ (default VOC metric), AP (COCO-style), and AP₇₅, averaged over 5 trials. All are fine-tuned for 24k iterations (~23 epochs). In the brackets are the gaps to the ImageNet supervised pre-training counterpart. In green are the gaps of at least +0.5 point.

Improved Baselines with Momentum Contrastive Learning

- Implement SimCLR's design in the MoCo framework
 - MLP head
 - Data augmentation
 - Cosine lr schedule

MoCo v2 - MLP head

- Replace fc head with a 2-layer MLP head
- 2048-d hidden layer
- Only influences unsupervised training stage

au	0.07	0.1	0.2	0.3	0.4	0.5
w/o MLP	60.6	60.7	59.0	58.2	57.2	56.4
w/ MLP	62.9	64.9	66.2	65.7	65.0	64.3

$$\mathcal{L}_q = -\log \frac{\exp(q \cdot k_+ / \tau)}{\sum_{i=0}^{K} \exp(q \cdot k_i / \tau)}$$

MoCo v2 - Augmentation

- Blur augmentation
- Color jitter (strengthened -> random)

		unsup. j	pre-tra	un	ImageNet	VO	C detec	tion
case	MLP	aug+	cos	epochs	acc.	AP ₅₀	AP	AP ₇₅
supervised					76.5	81.3	53.5	58.8
MoCo v1				200	60.6	81.5	55.9	62.6
(a)	\checkmark			200	66.2	82.0	56.4	62.6
(b)		\checkmark		200	63.4	82.2	56.8	63.2
(c)	\checkmark	\checkmark		200	67.3	82.5	57.2	63.9
(d)	\checkmark	\checkmark	\checkmark	200	67.5	82.4	57.0	63.6
(e)	✓	\checkmark	\checkmark	800	71.1	82.5	57.4	64.0

MoCo v2 - Comparison

		ImageNet							
case	MLP	aug+	cos	epochs	batch	acc.			
MoCo v1 [6]				200	256	60.6			
SimCLR [2]	\checkmark	\checkmark	\checkmark	200	256	61.9			
SimCLR [2]	\checkmark	\checkmark	\checkmark	200	8192	66.6			
MoCo v2	\checkmark	\checkmark	\checkmark	200	256	67.5			
results of longe	e r unsupe	r unsupervised training follow:							
SimCLR [2]	\checkmark	\checkmark	\checkmark	1000	4096	69.3			
MoCo v2	1	1	1	800	256	71.1			

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy (ResNet-50, 1-crop 224×224), trained on features from unsupervised pre-training. "aug+" in SimCLR includes blur and stronger color distortion. SimCLR ablations are from Fig. 9 in [2] (we thank the authors for providing the numerical results).

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning

• The first task directly applies contrastive learning at the **pixel level**.

Figure 2. Architecture of the PixContrast and PixPro methods.

PixPro – Pixel Contrast

- Compute pairs of pixels, from two views
- Contrastive loss

$$\mathcal{L}_{\text{Pix}}(i) = -\log \frac{\sum_{j \in \Omega_p^i} e^{\cos\left(\mathbf{x}_i, \mathbf{x}_j'\right)/\tau}}{\sum_{j \in \Omega_p^i} e^{\cos\left(\mathbf{x}_i, \mathbf{x}_j'\right)/\tau} + \sum_{k \in \Omega_n^i} e^{\cos\left(\mathbf{x}_i, \mathbf{x}_k'\right)/\tau}},$$

PixPro – Pixel-to-Propagation Consistency

- Spatial sensitivity
 - Discriminate spatially close pixels
 - PixContrast
- Spatial smoothness
 - Encourages spatially close pixels to be similar

Figure 2. Architecture of the PixContrast and PixPro methods.

ProPix - PPM

• PPM function

 $\mathbf{y}_i = \sum_{j \in \Omega} s(\mathbf{x}_i, \mathbf{x}_j) \cdot g(\mathbf{x}_j),$

where $s(\cdot, \cdot)$ is a similarity function defined as

$$s(\mathbf{x}_i, \mathbf{x}_j) = (\max(\cos(\mathbf{x}_i, \mathbf{x}_j), 0))^{\gamma},$$

- g(*)
 - L conv layers with BN and ReLU

PixPro - PPC Loss

$$\mathcal{L}_{\text{PixPro}} = -\cos(\mathbf{y}_i, \mathbf{x}'_j) - \cos(\mathbf{y}_j, \mathbf{x}'_i),$$

Figure 2. Architecture of the PixContrast and PixPro methods.

PixPro - Experiment

PixPro	SimCLR*	VOC	COCO	ImageNet
(pixel)	(instance)	AP	mAP	top-1 acc
\checkmark		58.8	40.8	55.1
	\checkmark	53.4	40.5	65.4
\checkmark	\checkmark	58.7	40.9	66.3

Table 4. Transfer performance of combining a pixel-level and an instance-level method. "SimCLR*" denotes a variant of SimCLR with the same encoders as our pixel-level approach. 100 epoch pre-training is adopted for all experiments.

FDN	⊥head	+instance -	COCO (FCOS)				
TITIN	Theau	THIStance	mAP	AP ₅₀	AP ₇₅		
			37.8	56.2	40.6		
\checkmark			38.1	56.7	41.2		
\checkmark	\checkmark		38.6	57.3	41.5		
\checkmark	\checkmark	\checkmark	39.8	58.4	42.7		

Table 5. FPN and head pre-training with transfer to COCO using an FCOS detector [36]. 100 epoch pre-training is adopted for all experiments.

PixPro - Experiment

Mathod	# Epoch	Pascal	l VOC (I	R50-C4)	COC	O (R50-	FPN)	COC	CO (R50	-C4)	Cityscapes (R50)
Method	#. Epoch	AP	AP ₅₀	AP ₇₅	mAP	AP_{50}	AP ₇₅	mAP	AP_{50}	AP ₇₅	mIoU
scratch	-	33.8	60.2	33.1	32.8	51.0	35.3	26.4	44.0	27.8	65.3
supervised	100	53.5	81.3	58.8	39.7	59.5	43.3	38.2	58.2	41.2	74.6
MoCo [19]	200	55.9	81.5	62.6	39.4	59.1	43.0	38.5	58.3	41.6	75.3
SimCLR [9]	1000	56.3	81.9	62.5	39.8	59.5	43.6	38.4	58.3	41.6	75.8
MoCo v2 [10]	800	57.6	82.7	64.4	40.4	60.1	44.3	39.5	59.0	42.6	76.2
InfoMin [35]	200	57.6	82.7	64.6	40.6	60.6	44.6	39.0	58.5	42.0	75.6
InfoMin [35]	800	57.5	82.5	64.0	40.4	60.4	44.3	38.8	58.2	41.7	75.6
PixPro (ours)	100	58.8	83.0	66.5	41.3	61.3	45.4	40.0	59.3	43.4	76.8
PixPro (ours)	400	60.2	83.8	67.7	41.4	61.6	45.4	40.5	59.8	44.0	77.2

Exploring Simple Siamese Representation Learning

SimSiam can learn meaningful representations without following:

- Negative sample pairs
- Large batches
- Momentum encoders

SimSiam

- Encoder f
 - ResNet, projection MLP head
- h
 - Prediction MLP head
- D, cosine similarity

$$\mathcal{D}(p_1, z_2) = -\frac{p_1}{\|p_1\|_2} \cdot \frac{z_2}{\|z_2\|_2},$$

Algorithm 1 SimSiam Pseudocode, PyTorch-like

```
# f: backbone + projection mlp
# h: prediction mlp
```

```
for x in loader: # load a minibatch x with n samples
    x1, x2 = aug(x), aug(x) # random augmentation
    z1, z2 = f(x1), f(x2) # projections, n-by-d
    p1, p2 = h(z1), h(z2) # predictions, n-by-d
```

L = D(p1, z2)/2 + D(p2, z1)/2 # loss

```
L.backward() # back-propagate
update(f, h) # SGD update
```

```
def D(p, z): # negative cosine similarity
    z = z.detach() # stop gradient
```

```
p = normalize(p, dim=1) # l2-normalize
z = normalize(z, dim=1) # l2-normalize
return -(p*z).sum(dim=1).mean()
```

SimSiam - Stop Gradient

$$\mathcal{L} = \frac{1}{2}\mathcal{D}(p_1, \texttt{stopgrad}(z_2)) + \frac{1}{2}\mathcal{D}(p_2, \texttt{stopgrad}(z_1)).$$

SimSiam - Experiment

• If h removed

$$rac{1}{2}\mathcal{D}(z_1, ext{stopgrad}(z_2)) + rac{1}{2}\mathcal{D}(z_2, ext{stopgrad}(z_1))$$
 $\mathcal{D}(z_1, z_2)$ with magnitude scaled by 1/2

• Using stop-grad == removing stop-grad and scaling loss by 1/2

	pred. MLP h	acc. (%)
baseline	lr with cosine decay	67.7
(a)	no pred. MLP	0.1
(b)	fixed random init.	1.5
(c)	lr not decayed	68.1

batch size	64	128	256	512	1024	2048	4096
acc. (%)	66.1	67.3	68.1	68.1	68.0	67.9	64.0

Table 2. Effect of batch sizes (ImageNet linear evaluation accuracy with 100-epoch pre-training).

		proj. MI	LP's BN	pred. M		
	case	hidden	output	hidden	output	acc. (%)
(a)	none	-	-	-	-	34.6
(b)	hidden-only	\checkmark	-	\checkmark	-	67.4
(c)	default	\checkmark	\checkmark	\checkmark	-	68.1
(d)	all	\checkmark	\checkmark	\checkmark	\checkmark	unstable

Table 3. Effect of batch normalization on MLP heads (ImageNet linear evaluation accuracy with 100-epoch pre-training).

method	batch size	negative pairs	momentum encoder	100 ep	200 ep	400 ep	800 ep
SimCLR (repro.+)	4096	\checkmark		66.5	68.3	69.8	70.4
MoCo v2 (repro.+)	256	\checkmark	\checkmark	67.4	69.9	71.0	72.2
BYOL (repro.)	4096		\checkmark	66.5	70.6	73.2	74.3
SwAV (repro.+)	4096			66.5	69.1	70.7	71.8
SimSiam	256			68.1	70.0	70.8	71.3

	VOC 07 detection			VOC 07+12 detection			COCO detection			COCO instance seg.		
pre-train	AP ₅₀	AP	AP ₇₅	AP ₅₀	AP	AP ₇₅	AP ₅₀	AP	AP ₇₅	AP ₅₀ ^{mask}	AP ^{mask}	AP ₇₅ ^{mask}
scratch	35.9	16.8	13.0	60.2	33.8	33.1	44.0	26.4	27.8	46.9	29.3	30.8
ImageNet supervised	74.4	42.4	42.7	81.3	53.5	58.8	58.2	38.2	41.2	54.7	33.3	35.2
SimCLR (repro.+)	75.9	46.8	50.1	81.8	55.5	61.4	57.7	37.9	40.9	54.6	33.3	35.3
MoCo v2 (repro.+)	77.1	48.5	52.5	82.3	57.0	63.3	58.8	39.2	42.5	55.5	34.3	36.6
BYOL (repro.)	77.1	47.0	49.9	81.4	55.3	61.1	57.8	37.9	40.9	54.3	33.2	35.0
SwAV (repro.+)	75.5	46.5	49.6	81.5	55.4	61.4	57.6	37.6	40.3	54.2	33.1	35.1
SimSiam, base	75.5	47.0	50.2	82.0	56.4	62.8	57.5	37.9	40.9	54.2	33.2	35.2
SimSiam, optimal	77.3	48.5	52.5	82.4	57.0	63.7	59.3	39.2	42.1	56.0	34.4	36.7