

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers

Enze Xie¹*Wenhai Wang² Zhiding Yu³ Anima Anandkumar^{3,4} Jose M. Alvarez³ Ping Luo¹ ¹The University of Hong Kong ²Nanjing University ³NVIDIA ⁴Caltech

Self Attention

Input: Sequence(x_i) Output: Sequence(**b**_{*i*}) **Q**:Query **K**:Key **V**:Value

Position Encoding

Add Position information to Self-attention

Original Paper: an manual-designed position encoding ,added with input embedding

Position Encoding can be learnt from data

ViT & others

Input: C*H*W -> N * (*P*²*C)

Linear Projection N * (P^{2} *C) -> N * 512

Position Encoding Learnable

MLP head: Process on the **learnable** embedding(*)

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

ViT & others

SETR ViT + decoder

Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segformer

1.Contains a novelhierarchically structuredTransformer encoder whichoutputs multiscale features

2. MLP decoder aggregatesfeatures from differentlayers and merge global&local information

3. Without Position encoding

Figure 2: **The proposed SegFormer framework** consists of two main modules: A hierarchical Transformer encoder to extract coarse and fine features; and a lightweight All-MLP decoder to directly fuse these multi-level features and predict the semantic segmentation mask. "FFN" indicates feed-forward network.

[1]Conditional positional encodings for vision transformers

Figure 2: **The proposed SegFormer framework** consists of two main modules: A hierarchical Transformer encoder to extract coarse and fine features; and a lightweight All-MLP decoder to directly fuse these multi-level features and predict the semantic segmentation mask. "FFN" indicates feed-forward network.

Figure 2: **The proposed SegFormer framework** consists of two main modules: A hierarchical Transformer encoder to extract coarse and fine features; and a lightweight All-MLP decoder to directly fuse these multi-level features and predict the semantic segmentation mask. "FFN" indicates feed-forward network.

(c) Mix-FFN vs. positional encoding (PE) for different test resolution on Cityscapes.

Inf Res	Enc Type	mIoU \uparrow
768×768	PE	77.3
1024×2048	PE	74.0
768×768	Mix-FFN	80.5
1024×2048	Mix-FFN	79.8

Figure 3: Effective Receptive Field (ERF) on Cityscapes (average over 100 images). Top row: Deeplabv3+. Bottom row: Seg-Former. ERFs of the four stages and the decoder heads of both architectures are visualized. Best viewed with zoom in.

	Method	Encoder	Params↓	ADE20K			Cityscapes		
				Flops↓	FPS ↑	mIoU ↑	Flops↓	FPS ↑	mIoU ↑
Real-Time	FCN [1]	MobileNetV2	9.8	39.6	64.4	19.7	317.1	14.2	61.5
	ICNet [11]	-	-	-	-	-	-	30.3	67.7
	PSPNet [17]	MobileNetV2	13.7	52.9	57.7	29.6	423.4	11.2	70.2
	DeepLabV3+ [20]	MobileNetV2	15.4	69.4	43.1	34.0	555.4	8.4	75.2
				8.4	50.5	37.4	125.5	15.2	76.2
	SogFormor (Ours)	MIT BO	3.8	-	-	-	51.7	26.3	75.3
	Segronner (Ours)	WII 1-DU	5.0	-	-	-	31.5	37.1	73.7
				-	-	-	17.7	47.6	71.9
lime	FCN [1]	ResNet-101	68.6	275.7	14.8	41.4	2203.3	1.2	76.6
	EncNet [24]	ResNet-101	55.1	218.8	14.9	44.7	1748.0	1.3	76.9
	PSPNet [17]	ResNet-101	68.1	256.4	15.3	44.4	2048.9	1.2	78.5
	CCNet [41]	ResNet-101	68.9	278.4	14.1	45.2	2224.8	1.0	80.2
	DeeplabV3+ [20]	ResNet-101	62.7	255.1	14.1	44.1	2032.3	1.2	80.9
al-'	OCRNet [23]	HRNet-W48	70.5	164.8	17.0	45.6	1296.8	4.2	81.1
Non Re	GSCNN [35]	WideResNet38	-	-	-	-	-	-	80.8
	Axial-DeepLab [74]	AxialResNet-XL	-	-	-	-	2446.8	-	81.1
	Dynamic Routing [75]	Dynamic-L33-PSP	-	-	-	-	270.0	-	80.7
	Auto-Deeplab [50]	NAS-F48-ASPP	-	-	-	44.0	695.0	-	80.3
	SETR [7]	ViT-Large	318.3	-	5.4	50.2	-	0.5	82.2
	SegFormer (Ours)	MiT-B4	64.1	95.7	15.4	51.1	1240.6	3.0	83.8
	SegFormer (Ours)	MiT-B5	84.7	183.3	9.8	51.8	1447.6	2.5	84.0

-