PromptDet: Towards Open-vocabulary Detection using Uncurated Images

Chengjian Feng¹, Yujie Zhong¹, Zequn Jie¹, Xiangxiang Chu¹ Haibing Ren¹, Xiaolin Wei¹, Weidi Xie^{2, ⊠}, and Lin Ma¹

¹Meituan Inc. ²Shanghai Jiao Tong University

Detection

- Localization
- Classification

Open-vocabulary

• Open-set

- Train on A, test on B
- Multimodality
 - Visual, image/video
 - Language, text

• Prediction related with input text prompt

(1) Contrastive pre-training

(2) Create dataset classifier from label text

(1) Contrastive pre-training

(1) Contrastive pre-training

H * W

<pre># image_encoder - ResNet or Vision Transformer</pre>
<pre># text_encoder - CBOW or Text Transformer</pre>
<pre># I[n, h, w, c] - minibatch of aligned images</pre>
<pre># T[n, 1] - minibatch of aligned texts</pre>
<pre># W_i[d_i, d_e] - learned proj of image to embed</pre>
<pre># W_t[d_t, d_e] - learned proj of text to embed</pre>
<pre># t - learned temperature parameter</pre>

extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) #[n, d_t]

```
# joint multimodal embedding [n, d_e]
I_e = l2_normalize(np.dot(I_f, W_i), axis=1)
T_e = l2_normalize(np.dot(T_f, W_t), axis=1)
```

scaled pairwise cosine similarities [n, n] logits = np.dot(I_e, T_e.T) * np.exp(t)

symmetric loss function

labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

• Dataset

- 400 million pairs (image, text)
- Collected from Internet
- Training
 - 32 epochs
 - minibatch size of 32,768
 - 18 days on 592 V100 GPUs (RN50x64)
 - 12 days on 256 V100 GPUs (ViT-L/14)

PromptDet: Towards Open-vocabulary Detection using Uncurated Images

Chengjian Feng¹, Yujie Zhong¹, Zequn Jie¹, Xiangxiang Chu¹ Haibing Ren¹, Xiaolin Wei¹, Weidi Xie^{2, ⊠}, and Lin Ma¹

¹Meituan Inc. ²Shanghai Jiao Tong University

Naive Detector

- Class-agnostic RPN
- Classify with distance

Open-vocabulary object detector

Naive Detector

- Class-agnostic RPN
- Classify with

Classify with distance

$$\begin{array}{c}
 Tiger \\
 Cooker \\
 Fuge \\
 fuge \\
 fuge \\
 manual prompt \\
 fuge \\
 manual prompt \\
 fuge \\
 fuge \\
 manual prompt \\
 fuge \\
 fuge \\
 manual prompt \\
 fuge \\
 fuge \\
 fuge \\
 fuge \\
 manual prompt \\
 fuge \\
 fuge \\
 manual prompt \\
 fuge \\$$

Open-vocabulary object detector

Limitation

- {Class name} \rightarrow category embedding, suboptimal
 - Lexical ambiguity
- Domain gap on the visual representation
 - CLIP, scene-centric
 - RPN, object-centric
- Base categories, less diverse
 - Insufficient to guarantee the generalization

Regional Prompt Learning RPL

- Learnable vectors
 - Shared for all categories
- Description

$$c_{\text{almond}} = \phi_{\text{text}}([p_1, \dots, p_j, g(\underline{\text{category}}), p_{j+1}, \dots, p_{j+h}, g(\underline{\text{description}})])$$

{category: "almond", description: "oval-shaped edible seed of the almond tree"}

Regional Prompt Learning RPL

- Off-line manner
- Visual
 - Crops from LVIS
 - Base categories

Regional Prompt Learning RPL

Table 2: Comparison on manually designed and learned prompt. Here, we only use two learnable prompt vectors in PRL, *i.e.* [1 + 1] refers to using one vector for prefix, and one vector for suffix.

	Prompt	AP_{novel}	AP_c	AP_f	AP
"a photo of [category]"	manual	7.4	17.2	26.1	19.0
"a photo of [category], which is [description]"	manual	9.0	18.6	26.5	20.1
regional prompt learning	[1+1]	11.1	18.8	26.6	20.3

- Sourcing candidate images
 - LAION-400M, initial corpus
 - N novel category prompt
 - Keep images with highest similarity
 - w/o GT box
- Alternate RPL and sourcing

• Alternate RPL and sourcing

Table 3: Effectiveness of self-training with different prompts. 1-iter, 2-iter and 3-iter denote that Stage-I (*i.e.* RPL) and Stage-II (*i.e.* image sourcing) are performed for one, two or three iterations, respectively.

Prompt method	Self-training	AP_{novel}	AP_c	AP_f	AP
"a photo of [category], which is [description]"	\checkmark	$\begin{array}{c} 9.0\\ 15.3\end{array}$		26.5 25.8	_
Regional prompt learning		11.1	18.8	26.6	20.3
PromptDet (1-iter)	\checkmark	15.9	17.6	25.5	20.4
PromptDet (2-iter)	\checkmark	19.0	18.5	25.8	21.4
PromptDet (3-iter)	\checkmark	19.3	18.3	25.8	21.4

- Bounding box generation
 - Sourced images, object-centric
 - Top-K proposals, objectness
 - Maximal classification score
 - Re-training

Fig. 4: Visualisation of the generated pseudo ground truth for the sourced images.

Table 4: Left: the comparison on different box generation methods. Right: the effect on increasing the sourced candidate images.

Method	AP_{nove}	$_{l} \operatorname{AP}_{c} \operatorname{AP}_{f}$	AP	#Web images	AP_{novel}	$AP_c AP_f AP$
w/o self-training	10.4	$19.5 \ 26.6$	20.6	0	10.4	19.5 26.6 20.6
image	9.9	18.8 26.0	20.1	50		$19.3 \ 26.2 \ 21.2$
max-size	9.5	$18.8 \ 26.1$	20.1	100		$19.3 \ 26.2 \ 21.4$
max-objscore	11.3	$18.7 \ 26.0$	20.3	200		19.1 26.0 21.5
max-predscore (ours)	19.0	$18.5 \ 25.8$	21.4	300	19.0	18.5 25.8 21.4

Dataset

Table 1: A summary of dataset statistics. The numbers in bracket refer to the number of base and novel categories.

Dataset	Train Eval.		Definition	#Images	#Categories
LVIS LAION-400M	_	_	original LVIS dataset image-text pairs filtered by CLIP	$\begin{array}{c} 0.1\mathrm{M} \\ 400\mathrm{M} \end{array}$	1203 unlabeled
LVIS-base	\checkmark	×	common and frequent categories	0.1M	866
LAION-novel	\checkmark	×	image subset of novel categories	$0.1\mathrm{M}$	337 (noisy)
LVIS minival	×	\checkmark	standard LVIS validation set	$20\mathrm{K}$	1203 (866 + 337)

Result

Table 6: Detection results on the LVIS v1.0 validation set. Both Detic and our proposed approach have exploited the external images. However, in Detic, the images are manually annotated and thus indicated by '*'. Notably, PromptDet does not require a knowledge distillation from the CLIP visual encoder at the detector training, which is shown to prominently boost the performance but significantly increase the training costs.

Method	Epochs	Scale Jitter	Input Size	#External	AP_{novel}	AP_c A	AP_f	AP
ViLD-text [11]	384	$100 \sim 2048$	1024×1024	0	10.1	23.9 3	32.5	24.9
ViLD [11]	384	$100 \sim 2048$	1024×1024	0	16.1	20.0 2	28.3	22.5
ViLD-ens. [11]	384	$100 \sim 2048$	1024×1024	0	16.6	24.6 3	30.3	25.5
Detic [36]	384	$100 \sim 2048$	1024×1024	$1.2 M^*$	17.8	26.3 3	31.6	26.8
PromptDet	12	$640 \sim 800$	800×800	$0.1\mathrm{M}$	19.0	18.5 2	25.8	21.4
PromptDet	72	$100 \sim 1280$	800×800	0.1M	21.4	23.3 2	29.3	25.3