Papers On Object Detection

Gong Qiqi

Paper List

- 1. Training Region-based Object Detectors with Online Hard Example Mining
- 2. R-FCN: Object Detection via Region-based Fully Convolutional Networks
- 3. Feature pyramid networks for object detection (FPN)
- 4. Cascade R-CNN: Delving into High Quality Object Detection
- 5. You Only Look Once: Unified, Real-Time Object Detection (YOLO)
- 6. SSD: Single Shot MultiBox Detector
- 7. Focal Loss for Dense Object Detection

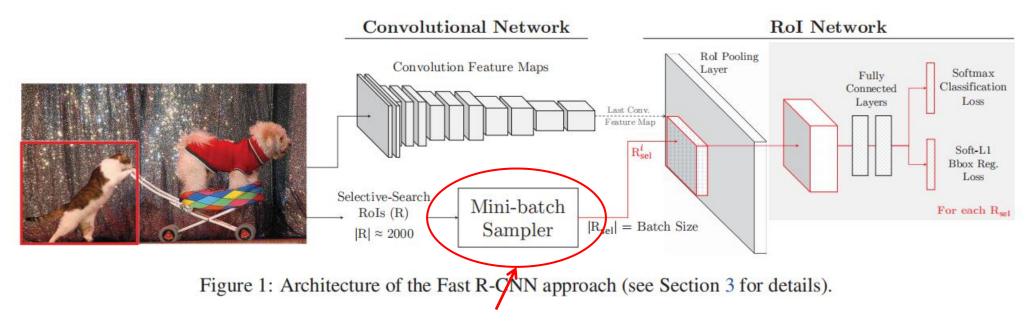
Training Region-based Object Detectors with Online Hard Example Mining(OHEM)

Author: Abhinav Shrivastava; Abhinav Gupta; Ross Girshick

- Basic Info.:
 - 2016 CVPR
- Author Introduction:
 - Ross Girshick (RBG) : Facebook AI Research
 - Abhinav Shrivastava, Abhinav Gupta: CMU

- Motivation:
 - Unbalanced labels for background examples and foreground examples
 - Overwhelming number of easy examples and a small number of hard examples
- Contribution:
 - Removes need for several heuristics and hyperparameters
 - Consistent and significant boosts in mAP
 - Effectiveness increased
- Inspiration:
 - Could be useful when samples of positive examples are small

• Overview of Fast R-CNN:

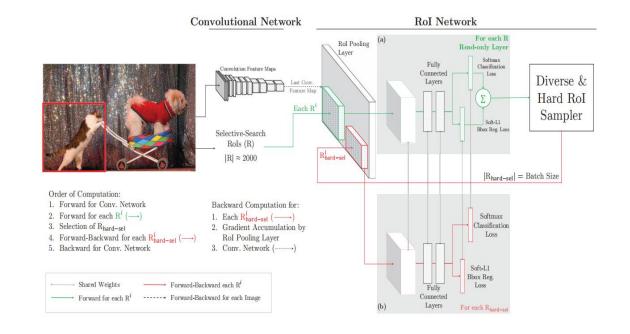


hyperparameters are needed!

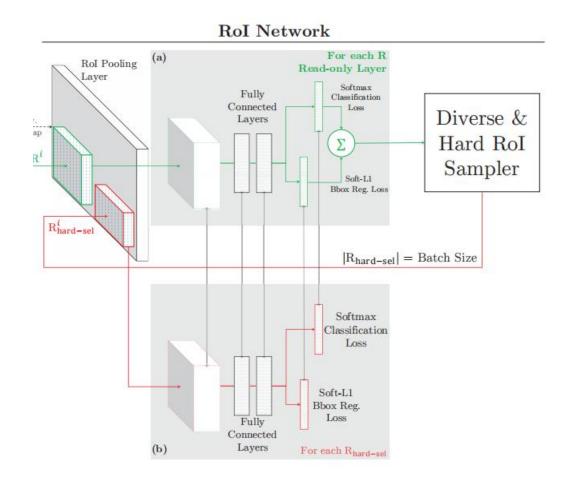
- Overview of Fast R-CNN:
 - Foreground RoIs (fg): IoU>=0.5
 - Background RoIs (**bg**): $IoU \in [0.1, 0.5)$
 - 0.1 is a threshold (hyperparameter) here
 - Method proposed in this paper elinimate this parameter
 - Balance fg-bg RoIs:
 - In paper of Fast R-CNN, ratios of examples of fg to bg is SET to 1:3
 - Proposed method elinimate this hyperparameter ratio

- Definition:
 - Hard examples mining:
 - for some period, the model is *fixed* to find new examples
 - for some period, model is trained on *fixed* training set
 - Hard examples: examples with high loss
 - Easy examples: examples with low loss

- Implementation:
 - Compute feature map first
 - Use all RoIs as input RoIs
 - Take hard examples
 - Set loss of easy eg.s as 0
 - Use NMS to remove high overlapped examples



• Implementation:



Readonly Layer (a):

• Only perform forward passes

Hard RoI Sampler:

• Take **B** hard examples for **N** images

Layer (b):

- Use hard examples to compute forward and backward passes
- Weights are shared between (a) and (b)

- A Question:
 - What does Online mean?
 - An explanation
 - 在线学习中,每次录入一条数据(而非一个batch),训练完后直接更新模型
 - 而离线学习是一个batch全部录入完成后,才更新模型

R-FCN: Object Detection via Region-based Fully Convolutional Networks

Author: Jifeng Dai; Yi Li; Kaiming He; Jian Sun

- Basic Info.:
 - 2016 NIPS
- Author Introduction:
 - MSRA(微软亚洲研究院)
 - Jifeng Dai(代季峰)
 - Kaiming He(何恺明):现 Facebook AI Research
 - Jian Sun(孙剑)

- Background:
 - VGG and AlexNet were widely used in object detection
 - ResNet was put forward
- Motivation:
 - Two-stage object detction algorithm can be speeded up by sharing computation
 - Translation invariance of classification VS Translation variance of detection

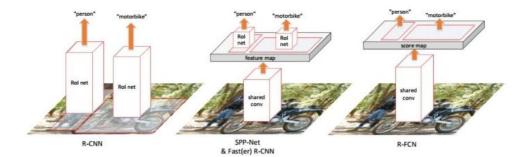


Table 1: Methodologies of region-based	<i>d</i> detectors using ResNet-101 [10].
--	--

	R-CNN [8]	Faster R-CNN [20, 10]	R-FCN [ours]
depth of shared convolutional subnetwork	0	91	101
depth of RoI-wise subnetwork	101	10	0

- Contribution:
 - Competitive with Faster R-CNN
 - Speed up for 2.5-20 times than Faster R-CNN

- Implementation:
 - Compute feature map for an image
 - RPN (Region Proposals Network):
 - Compute RoI with the feature map
 - Object Classification:
 - Position-sensitive score maps : $k^2(C+1)-d$
 - Vote for each classification
 - Bound Box Regression:
 - $4k^2$ -d vector

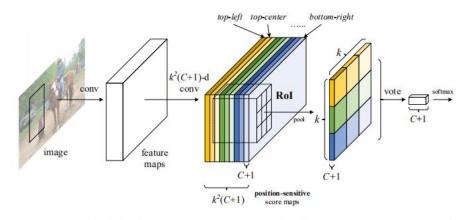


Figure 1: Key idea of **R-FCN** for object detection. In this illustration, there are $k \times k = 3 \times 3$ position-sensitive score maps generated by a fully convolutional network. For each of the $k \times k$ bins in an RoI, pooling is only performed on one of the k^2 maps (marked by different colors).

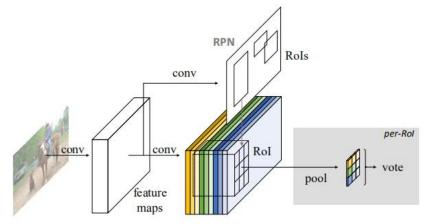
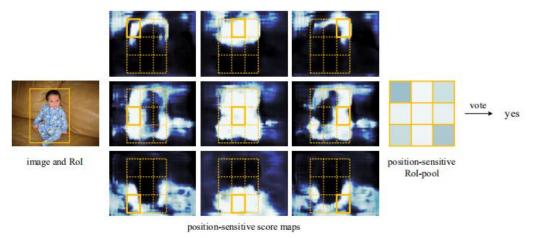
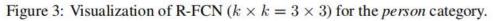


Figure 2: Overall architecture of R-FCN. A Region Proposal Network (RPN) [19] proposes candidate RoIs, which are then applied on the score maps. All learnable weight layers are convolutional and are computed on the entire image; the per-RoI computational cost is negligible.

- Implementation:
 - For category **person** (an example)





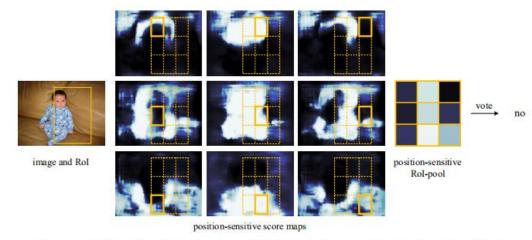


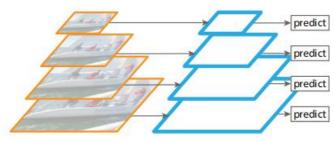
Figure 4: Visualization when an RoI does not correctly overlap the object.

Feature pyramid networks for object detection

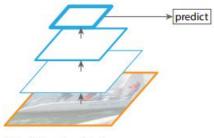
Author: Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie

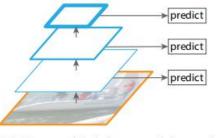
- Basic Info.:
 - 2017 CVPR
- Team intro.:
 - Facebook AI Research
 - Cornell University and Cornell Tech
- BG & Motivation:
 - Low-level feature Multi-scale; High-level feature Strong semantic info.
 - Feature pyramid could help detect objects with different scales
 - Deep learning based detectors avoid using pyramid representations due to compute and memory intensive (impractical for real applications)

• A simple compare:



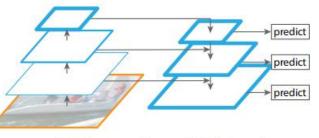
(a) Featurized image pyramid





(c) Pyramidal feature hierarchy

(b) Single feature map



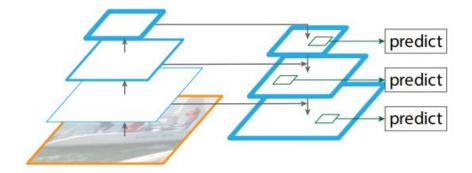
(d) Feature Pyramid Network

(a) Using <u>IMAGE pyramid</u> to build <u>FEATURE</u> pyramid : slow

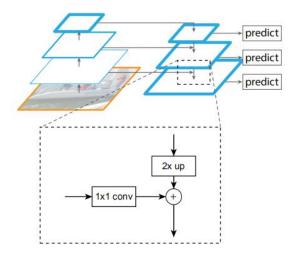
(b) Do prediction at the fina feature level: like SPP Net and RCNNs

(c) No upsampling pathway : perform poorly when detecting small scale objects

- Contribution:
 - Proposing bottom-up pathway, top-down pathway and lateral connections (横向连接) structure
 - Creating a feature pyramid owning strong semantics at all scales
 - Do not increase testing times
 - A module which could be used in detection network



- Implementation:
 - Backbone: ResNet (use the output of Conv2:5, exclude Conv1: large memory)
 - Bottom-up pathway: 2x downsampling
 - Lateral connection: 1*1 conv. (reduce channel dimensions)
 - Top-down pathway: 2x upsampling (finally 3*3 conv to generate feature map)

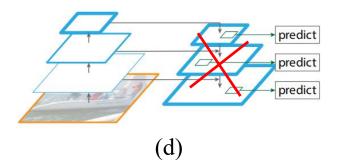


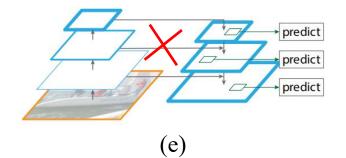
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer						
conv1	112×112		7×7, 64, stride 2									
				3×3 max pool, strid	le 2							
$\begin{array}{c} \text{conv2_x} & 56 \times 56 \\ \hline \begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 2 \end{array}$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$								
conv3_x	28×28	$\begin{bmatrix} 3\times3, 128\\ 3\times3, 128 \end{bmatrix} \times 2$	$\begin{bmatrix} 3\times3, 128\\ 3\times3, 128 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$						
conv4_x	14×14	$\begin{bmatrix} 3\times3,256\\3\times3,256\end{bmatrix}\times2$	$\begin{bmatrix} 3\times3,256\\3\times3,256\end{bmatrix}\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 3$						
conv5_x	7×7	$\begin{bmatrix} 3\times3,512\\ 3\times3,512\end{bmatrix}\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$						
	1×1		average pool, 1000-d fc, softmax									
FLO	OPs	1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^{9}	11.3×10^{9}						

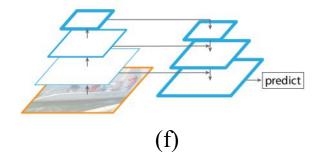
• Experiments:

- Work with RPN (Region Proposals Network): To produce suitable anchor boxes
- Anchor boxes: A set of bounding boxes whose aspect ratios and areas (manually)

RPN	feature	# anchors	lateral?	top-down?	AR ¹⁰⁰	AR ^{1k}	AR_s^{1k}	AR_m^{1k}	AR_l^{1k}
(a) baseline on conv4	C_4	47k			36.1	48.3	32.0	58.7	62.2
(b) baseline on conv5	C_5	12k			36.3	44.9	25.3	55.5	64.2
(c) FPN	$\{P_k\}$	200k	 ✓ 	\checkmark	44.0	56.3	44.9	63.4	66.2
Ablation experiments follow:						с			
(d) bottom-up pyramid	$\{P_k\}$	200k	1	1.	37.4	49.5	30.5	59.9	68.0
(e) top-down pyramid, w/o lateral	$\{P_k\}$	200k		\checkmark	34.5	46.1	26.5	57.4	64.7
(f) only finest level	P_2	750k	×	~	38.4	51.3	35.1	59.7	67.6







• Experiments:

• Work with FCNs

Fast R-CNN	proposals	feature	head	lateral?	top-down?	AP@0.5	AP	AP _s	AP_m	AP
(a) baseline on conv4	RPN, $\{P_k\}$	C_4	conv5			54.7	31.9	15.7	36.5	45.
(b) baseline on conv5	RPN, $\{P_k\}$	C_5	2fc			52.9	28.8	11.9	32.4	43.
(c) FPN	RPN, $\{P_k\}$	$\{P_k\}$	2fc	~	\checkmark	56.9	33.9	17.8	37.7	45.
Ablation experiments follow:	20				2		52			
(d) bottom-up pyramid	RPN, $\{P_k\}$	$\{P_k\}$	2fc	~		44.9	24.9	10.9	24.4	38.
(e) top-down pyramid, w/o lateral	RPN, $\{P_k\}$	$\{P_k\}$	2fc		\checkmark	54.0	31.3	13.3	35.2	45.
(f) only finest level	RPN, $\{P_k\}$	P_2	2fc	1	\checkmark	56.3	33.4	17.3	37.3	45.
Faster R-CNN	proposals	feature	head	lateral?	top-down?	AP@0.5	AP	AP _s	AP_m	AP
(*) baseline from He <i>et al.</i> $[16]^{\dagger}$	RPN, C_4	C_4	conv5			47.3	26.3	-	-	-
(a) baseline on conv4	RPN, C_4	C_4	conv5			53.1	31.6	13.2	35.6	47.
(b) baseline on conv5	RPN, C_5	C_5	2fc			51.7	28.0	9.6	31.9	43
(c) FPN	RPN, $\{P_k\}$	$\{P_k\}$	2fc	~	\checkmark	56.9	33.9	17.8	37.7	45

- Do well when detecting SMALL objects
- Competitive when detecting LARGE objects

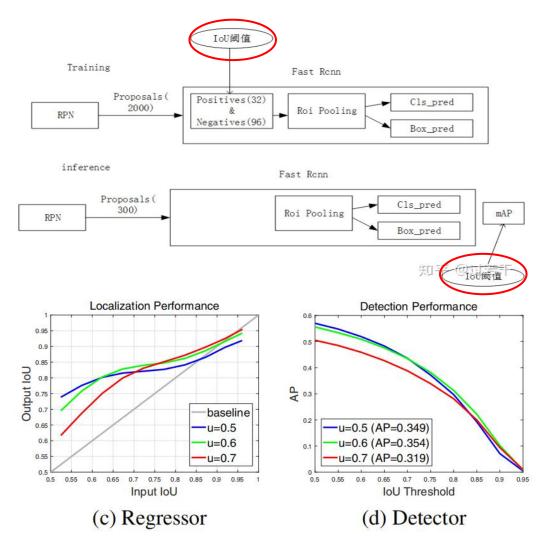
Cascade R-CNN: Delving into High Quality Object Detection

Author: Zhaowei Cai, Nuno Vasconcelos

- Basic Info.:
 - 2018 CVPR
- Team intro.:
 - UC San Diego
- BG & Motivation:
 - IoU threshold *u* is required to define positive/negative examples (training)
 - Trade-off: a) low u produces noisy detections; b) high u decreases performance
 - The output of a detector is a good distribution for training the next better detector

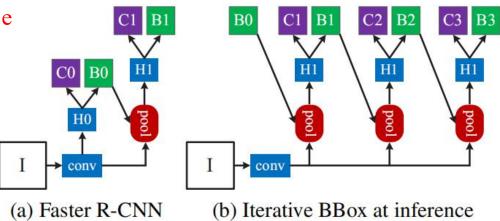
- Basic Info.:
 - 2018 CVPR
- Team intro.:
 - UC San Diego
- BG & Motivation:
 - IoU threshold *u* is required to define positive/negative examples (training)
 - Trade-off: a) low u produces noisy detections; b) high u decreases performance
 - The output of a detector is a good distribution for training the next better detector

• Introduction:



- Some "close" false positives (close but not correct bboxes) will be produced with IoU threshold (typical u=0.5) in training stage
- (c): A detector optimized at a single IoU level is not necessarily optimal at others (我理解的是两个红圈里的IoU的值要接 近, mismatch)
- (d): Simply increase IoU threshold could degrade detection performance

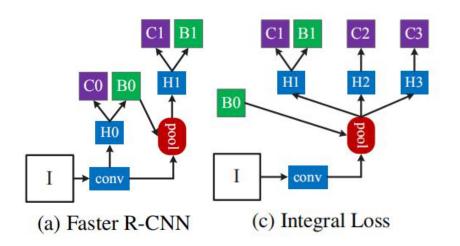
- Some other work:
 - Iterative Bounding-box Regression(迭代回归):
 - Represent a candidate b-box **b** of image patch x as $f(x, \mathbf{b})$
 - A single regression step of f is suboptimal
 - Use a iterative process to replace it: $f'(x, \mathbf{b}) = f \circ f \circ \cdots \circ f(x, \mathbf{b})$,
 - Problem: No benifit beyond applying f twice

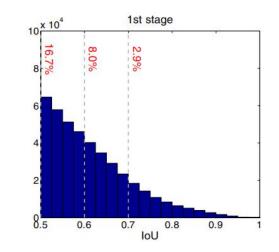


- Some other work:
 - Integral Loss:
 - Calculate loss with different IoU threshold: (分类Loss)

$$L_{cls}(h(x), y) = \sum_{u \in U} L_{cls}(h_u(x), y_u), \text{ where } U = \{0.5, 0.55, \cdots, 0.75\}$$

• Problem: Quick decrease of positive samples with *u* (figure on Right)

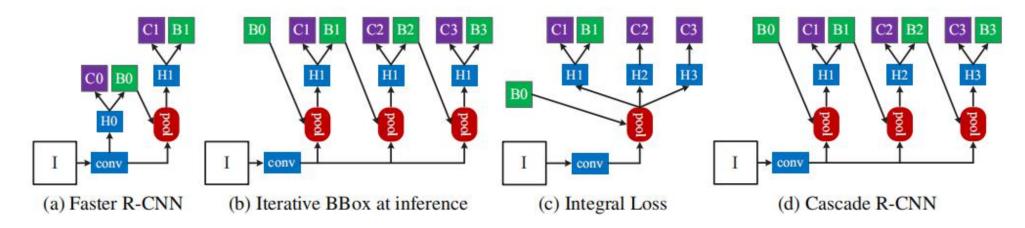




• Implementataion of Cascade R-CNN:

 $f(x,\mathbf{b}) = f_T \circ f_{T-1} \circ \cdots \circ f_1(x,\mathbf{b}),$

- Different from iterative regression: a) f is a resampling procedure which changes distribution; b) used at both training and inference stage; (c) f_t is optimized for all stages
- Loss: $L(x^t, g) = L_{cls}(h_t(x^t), y^t) + \lambda[y^t \ge 1]L_{loc}(f_t(x^t, \mathbf{b}^t), \mathbf{g})$, where $\mathbf{b}^t = f_{t-1}(x^{t-1}, \mathbf{b}^{t-1})$ (*t* is the stage)



Thanks for Listening~

Gong Qiqi

Reference List

- 1. <u>https://zhuanlan.zhihu.com/p/59002127</u>, 深度学习不可忽略之OHEM:Online Hard Example Mining
- 2. <u>https://blog.csdn.net/wfei101/article/details/79284512</u>, 目标检测: RFCN算法原理
 —>
- 3. <u>https://www.zhihu.com/search?type=content&q=R-FCN</u>, 目标检测: R-FCN (NIPS 2016)
- 4. <u>https://blog.csdn.net/baidu_30594023/article/details/82623623</u>, FPN全解-最全最详 细
- 5. <u>https://zhuanlan.zhihu.com/p/42553957</u>, Cascade R-CNN 详细解读