Pyramid Fusion Transformer for Semantic Segmentation

Zipeng Qin^{1,2} Jianbo Liu¹ Xiaolin Zhang² Maoqing Tian² Aojun Zhou^{2,3} Shuai Yi² Hongsheng Li¹ ¹The Chinese University of Hong Kong ²SenseTime Research ³Tetras.ai qinzipeng@sensetime.com hsli@ee.cuhk.edu.hk

MaskFormer

• MaskFormer employs a Transformer decoder to compute a set of pairs, each consisting of a class prediction and a mask embedding vector.

MaskFormer

- The model contains three modules :
- 1) a pixel-level module extracts per-pixel embeddings used to generate binary mask
- 2) a transformer module, computes *N* per-segment embeddings;
- 3) a segmentation module

Mask2Former

High-resolution features improve model performance, especially for small objects

Transformer-based Pyramid Fusion Transformer (PFT)

- 1. *multi-scale* transformer decoder
- 2. to avoid heavy computation, Neither intra-scale nor cross-scale pixel-to-pixel attention is used in our *PFT*
- *3.* The final prediction is the average of the per-scale predictions in the logit space.

- we recurrently stack three types of attention layers:
 (1) an intra-scale query self-attention layer that conducts conventional self-attention between queries within the same scale,
- (2) a novel *cross-scale inter-query attention* layer to efficiently communicate scale-aware information using the limited number of 4K queries of the 4 different scales,
 (3) an intra-scale query-pixel cross-attention layer that aggregates semantic information from flattened sequences of pixel tokens.

- we recurrently stack three types of attention layers:
 (1) an intra-scale query self-attention layer that conducts conventional self-attention between queries within the same scale,
- (2) a novel *cross-scale inter-query attention* layer to efficiently communicate scale-aware information using the limited number of 4K queries of the 4 different scales,
 (3) an intra-scale query-pixel cross-attention layer that aggregates semantic information from flattened sequences of pixel tokens.

Intra-scale query self-attention

• (1) an intra-scale query self-attention layer that conducts conventional self-attention between queries within the same scale,

• conducts self-attention only between category queries within the scale .

•

• The category queries *Qs* are zero-initialized at the first layer and updated by the stacked attention layers, the learnable positional encodings *Ps* are learned and shared at different depths.

$$Q_s, K_s = \text{Projection}(Q_s + \mathcal{P}_s),$$

$$V_s = \text{Projection}(Q_s),$$

$$Q_s = \text{Attention}(Q_s, K_s, V_s), \text{ for } s = 4, 8, 16, 32$$
(1)

- we recurrently stack three types of attention layers:
 (1) an intra-scale query self-attention layer that conducts conventional self-attention between queries within the same scale,
- (2) a novel *cross-scale inter-query attention* layer to efficiently communicate scale-aware information using the limited number of 4K queries of the 4 different scales,
 (3) an intra-scale query-pixel cross-attention layer that aggregates semantic information from flattened sequences of pixel tokens.

Cross-scale inter-query attention

• the number of such scale-aware queries in each scale is much smaller than the number of all visual tokens in each scale

$$\mathcal{Q}_{\text{all}} = \text{Concat}(\mathcal{Q}_4, \mathcal{Q}_8, \mathcal{Q}_{16}, \mathcal{Q}_{32}) \in \mathbb{R}^{4\mathcal{K} \times \widetilde{C}}$$

$$\mathcal{P}_{all} = \operatorname{Concat}(\mathcal{P}_4, \mathcal{P}_8, \mathcal{P}_{16}, \mathcal{P}_{32})$$

$$Q, K = \text{Projection}(\mathcal{Q}_{all} + \mathcal{P}_{all}),$$

$$V = \text{Projection}(\mathcal{Q}_{all}),$$

$$Q_4, Q_8, Q_{16}, Q_{32} = \text{Attention}(Q, K, V),$$
(2)

- we recurrently stack three types of attention layers:
 (1) an intra-scale query self-attention layer that conducts conventional self-attention between queries within the same scale,
- (2) a novel *cross-scale inter-query attention* layer to efficiently communicate scale-aware information using the limited number of 4K queries of the 4 different scales,
 (3) an intra-scale query-pixel cross-attention layer that aggregates semantic information from flattened sequences of pixel tokens.

Intra-scale query-pixel cross-attention.

• Within each scale, we fixed sinusoidal positional encodings *Ps*sine to the pixel tokens *Ps*, because of the too large number of pixel tokens.

$$Q_{s} = \operatorname{Projection}(\mathcal{Q}_{s} + \mathcal{P}_{s}),$$

$$K_{s} = \operatorname{Projection}(P_{s} + \mathcal{P}_{s}^{\operatorname{sine}}),$$

$$V_{s} = \operatorname{Projection}(P_{s}),$$

$$Q_{s} = \operatorname{Attention}(Q_{s}, K_{s}, V_{s}), \text{ for } s = 4, 8, 16, 32,$$
(3)

Training losse

 $L_{\rm cls} = \lambda_{\rm ce} L_{\rm ce} + \lambda_{\rm focal-ce} L_{\rm focal-ce},$

٠

 $L_{\text{mask}} = \lambda_{\text{focal}} L_{\text{focal}} + \lambda_{\text{dice}} L_{\text{dice}}.$

$$L_{\text{train}} = L_{\text{cls}} + L_{\text{mask}}$$

Generating Segmentation Maps.

• probability logits

Each scale average

$$\mathcal{L}_{s}^{\text{prob}} = \text{Linear}(\mathcal{Q}_{s}), \quad \mathcal{L}^{\text{prob}} = \frac{\sum_{\text{all } s} \mathcal{L}_{s}^{\text{prob}}}{4}, \quad (4)$$
 $p = \text{sigmoid}(\mathcal{L}^{\text{prob}})$

• binary category masks

$$\mathcal{L}_{s}^{\text{mask}} = \text{MLP}(\mathcal{Q}_{s}) \otimes \mathcal{M}_{s}, \quad \mathcal{L}^{\text{mask}} = \frac{\sum_{\text{all } s} \mathcal{L}_{s}^{\text{mask}}}{4}, \quad (5)$$
$$m = \text{sigmoid}(\mathcal{L}^{\text{mask}}),$$

• Sementic masks

 $\operatorname{argmax}_{i \in \{1, \dots, \mathcal{K}\}} p_i \cdot m_i(h, w)$

Experiments on the ADE20K dataset

backbone type	method	backbone	pretraining	crop size	batchsize	schedule	mIoU (s.s.)	mIoU (m.s.)	#params.
	OCRNet [42]	R101c	IM-1K	520×520	16	150k	-	45.3	-
	GRAr [8]	R101c	IM-1K	544×544	16	200k	hulemIoU (s.s.)mIoU (m.s.)k- 45.3 k- 47.1 k 44.0 44.9 k 45.5 46.4 k 44.5 46.7 k 45.5 47.2 k 46.0 48.1 k 45.6 (+1.1) 48.3 (+1.6)k 47.2 (+1.7) 49.4 (+2.2)k 47.9 (+1.9) 49.4 (+1.3)k 56.7 57.0 k 48.6 50.3 k 46.7 48.8 k 49.8 51.0 k 52.7 53.9 k 54.1 55.6 k 48.3 (+1.6) 49.6 (+0.8)k 51.0 (+1.2) 52.2 (+1.2)k 54.1 (+1.4) 55.3 (+1.4)k 56.0 (+1.9) 57.2 (+1.6)	-	
	DeepLebV2+ [5]	R50c	IM-1K	512×512	16	160k	44.0	44.9	44M
	DeepLab v 5+ [5]	R101c	IM-1K	512×512	16	160k	45.5	46.4	63M
CNN		R50	IM-1K	512×512	16	160k	44.5	46.7	41M
	MaskFormer [6]	R101	IM-1K	512×512	16	160k	45.5	47.2	60M
		R101c	IM-1K	512×512	16	160k	46.0	48.1	60M
		R50	IM-1K	512×512	16	160k	45.6 (+1.1)	48.3 (+1.6)	74M
	PFD (ours)	R101	IM-1K	512×512	16	160k	47.2 (+1.7)	49.4 (+2.2)	93M
		R101c	IM-1K	512×512	16	160k	47.9 (+1.9)	49.4 (+1.3)	93M
	BEiT [1]	ViT-L	IM-22K	640×640	16	160k	56.7	57.0	441M
	SETR [47]	ViT-L	IM-22K	512×512	16	160k	48.6	50.3	308M
		Swin-T	IM-1K	512×512	16	160k	46.7	48.8	42M
	MackEormar [6]	Swin-S	IM-1K	512×512	16	160k	49.8	51.0	63M
Transformer	Maskronner [0]	Swin-B	IM-22K	640×640	16	160k	52.7	53.9	102M
fransformer		Swin-L	IM-22K	640×640	16	160k	54.1	55.6	212M
		Swin-T	IM-1K	512×512	16	160k	48.3 (+1.6)	49.6 (+0.8)	74M
	DED (ours)	Swin-S	IM-1K	512×512	16	160k	51.0 (+1.2)	52.2 (+1.2)	96M
	rrb (ours)	Swin-B	IM-22K	640×640	16	160k	54.1 (+1.4)	55.3 (+1.4)	133M
		Swin-L	IM-22K	640×640	16	160k	56.0 (+1.9)	57.2 (+1.6)	242M
		Swin-L [†]	640	56.1 5	7.3				
	Mask2Former (ours)	Swin-L-Fa	aPN' 640	56.4 5	7.7				

Experiments on the PASCAL-Context dataset.

backbone type	method	backbone	pretraining	crop size	batchsize	schedule	mIoU (s.s.)	mIoU (m.s.)	#params.
	SENet [10]	R50c	IM-1K	512×512	16	38k	-	50.7	-
	51 Net [17]	R101c	IM-1K	512×512	16	38k	-	53.8	-
	GRAr [8]	R101c	IM-1K	544×544	16	50k	-	55.7	-
CNN		R50 [†]	IM-1K	480×480	16	40k	52.5	54.1	44M
CININ	MaskFormer [6]	R50c [†]	IM-1K	480×480	16	40k	52.3	53.9	44M
	Maski office [0]	R101 [†]	IM-1K	480×480	16	40k	53.7	55.4	63M
		R101c [†]	IM-1K	480×480	16	40k	53.1	55.6	63M
		R50	IM-1K	480×480	16	40k	53.3 (+0.8)	54.8 (+0.7)	60M
	PED (ours)	R50c	IM-1K	480×480	16	40k	54.2 (+1.9)	55.8 (+1.9)	60M
	(ours)	R101	IM-1K	480×480	16	40k	54.6 (+0.9)	56.2 (+0.8)	79M
		R101c	IM-1K	480×480	16	40k	55.5 (+2.4)	57.6 (+2.0)	79M

Experiments on the COCO-Stuff-10K dataset

backbone type	method	backbone	pretraining	crop size	batchsize	schedule	mIoU (s.s.)	mIoU (m.s.)	#params.
	OCRNet [42]	R101c	IM-1K	520×520	16	60k	-	39.5	-
	GRAr [8]	R101c	IM-1K	544×544	16	100k	-	41.9	-
CNN	MaskFormer [6]	R50	IM-1K	544×544	16	60k	37.1	38.9	44M
		R50c [†]	IM-1K	640×640	32	60k	37.7	38.1	44M
		R101	IM-1K	640×640	32	60k	39.1	39.8	63M
		R101c	IM-1K	640×640	32	60k	38.0	39.3	63M
	PFD (ours)	R50	IM-1K	640×640	16	60k	38.4 (+1.3)	40.3 (+1.4)	74M
		R50c	IM-1K	640×640	16	60k	39.5 (+1.8)	41.0 (+2.9)	74M
		R101	IM-1K	640×640	16	60k	40.9 (+1.8)	42.1 (+2.3)	93M
		R101c	IM-1K	640×640	16	60k	41.2 (+3.2)	42.3 (+3.0)	93M
	Mask Earman [6]	Swin-T [†]	IM-1K	640×640	16	160k	42.2	42.5	42M
Transformer	waskronner [0]	Swin-S [†]	IM-1K	640×640	16	160k	44.1	45.0	63M
Transformer	PFD (ours)	Swin-T	IM-1K	640×640	16	160k	42.6 (+0.4)	42.8 (+0.3)	74M
		Swin-S	IM-1K	640×640	16	160k	44.8 (+0.7)	45.3 (+0.3)	96M

54.50 54.25 54.06 54.00 53.89 54.00 53.87 53.78 53.68 53.65 53.75 53.50 53.39 53.25 53.00 2 3 5 6 7 8 number of layers

Figure 4. Performances w/ and w/o cross-scale inter-query attention. Results obtained with ResNet-50c backbone on three datasets with various sizes and complexities.

Ablations on weight sharing for different modules

Figure 5. Ablations on number of transformer layers within each per-scale transformer decoder.

Figure 6. Loss weights for focal-style cross-entropy loss. We choose $\lambda_{\text{focal-ce}} \in \{0.0, 0.5, 1.0, 2.0, 5.0\}$ and train our model under the same setting on PASCAL Context dataset. We pick $\lambda_{\text{focal-ce}} \in \{1.0, 2.0\}$ as our candidate parameters given the results.