Open-Vocabulary Image Segmentation

Golnaz Ghiasi, Xiuye Gu, Yin Cui, Tsung-Yi Lin Google Research

{golnazg, xiuyegu, yincui, tsungyi}@google.com

Arxiv, Dec 2021

Open-Vocabulary

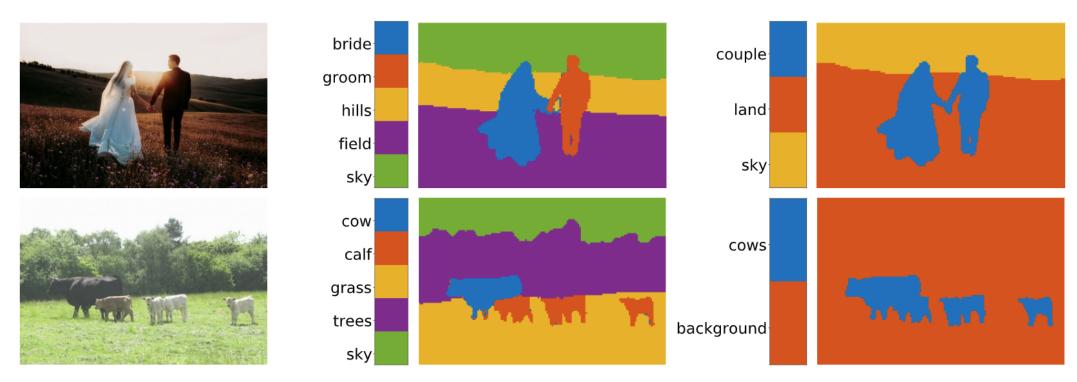
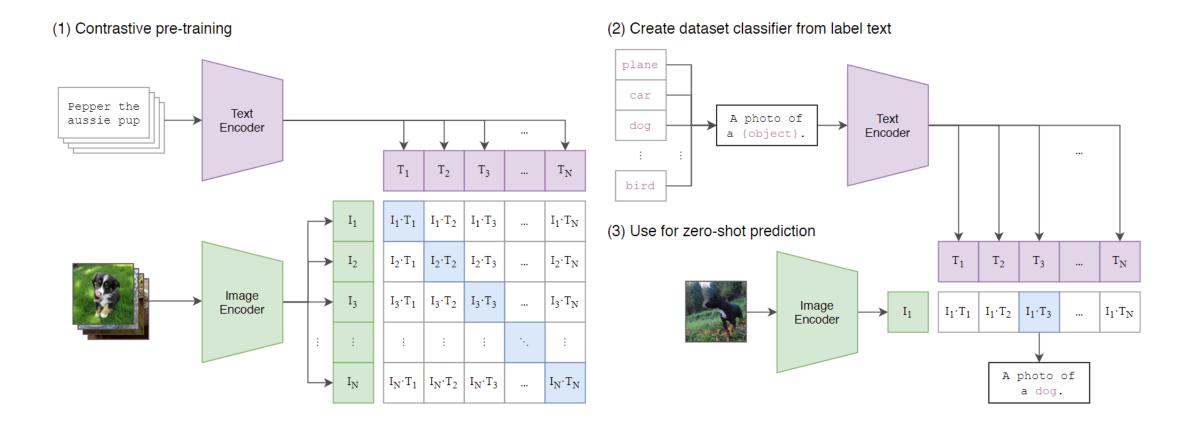
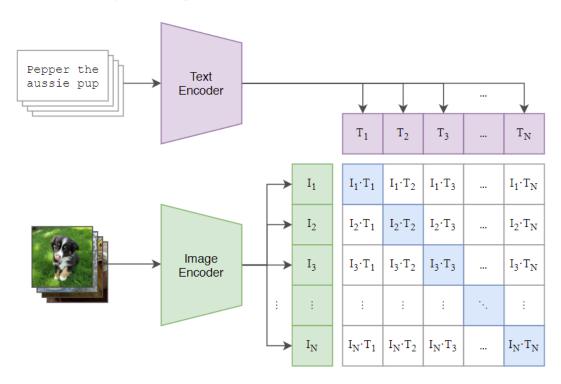
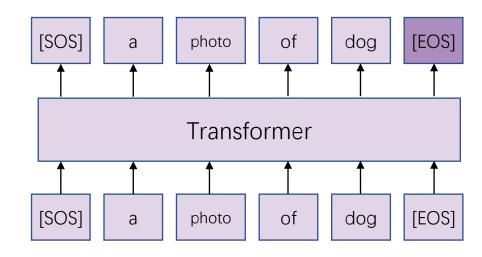


Figure 1. Examples of image segmentation with arbitrary text queries. We propose a model, called **OpenSeg**, that can organize pixels into meaningful regions indicated by texts. In contrast to segmentation models trained with close-vocabulary categories, OpenSeg can handle arbitrary text queries. For example, the model segments out a region for 'couple' and two regions for 'bride' and 'groom'.

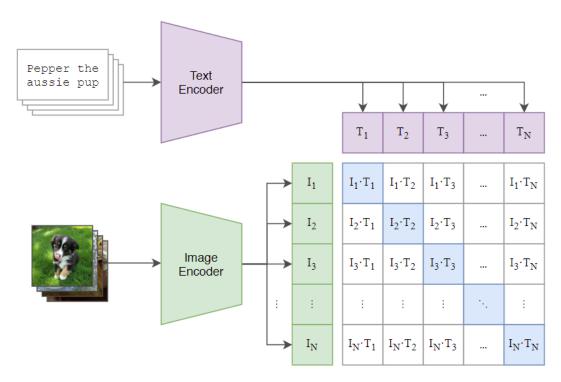


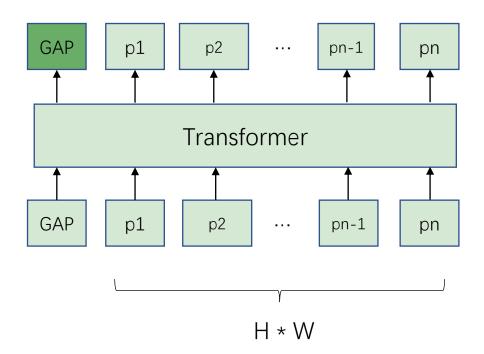
(1) Contrastive pre-training



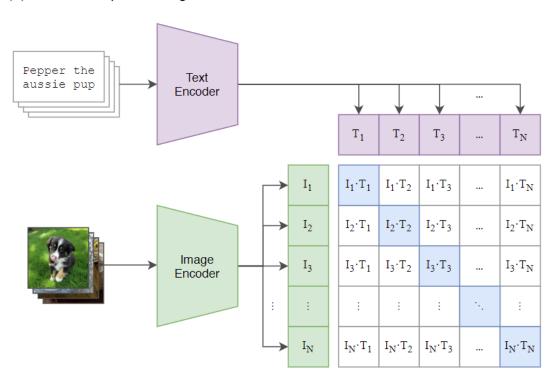


(1) Contrastive pre-training





(1) Contrastive pre-training



```
# image_encoder - ResNet or Vision Transformer
# text encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
               - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
                - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) \#[n, d_i]
T_f = text encoder(T) \#[n, d, t]
# joint multimodal embedding [n, d_e]
I_e = 12\_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_{normalize(np.dot(T_f, W_t), axis=1)}
# scaled pairwise cosine similarities [n, n]
loaits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
      = (loss_i + loss_t)/2
```

- Dataset
 - 400 million pairs (image, text)
 - Collected from Internet
- Training
 - 32 epochs
 - minibatch size of 32,768
 - 18 days on 592 V100 GPUs (RN50x64)
 - 12 days on 256 V100 GPUs (ViT-L/14)

ALIGN: A Large-scale ImaGe and Noisy-text embedding

- Leverage a noisy dataset of 1.8 billion image-text pairs
- Scale of our corpus can make up for its noise and leads to SOTA

"motorcycle front wheel"

"thumbnail for version as of 21 57 29 june 2010"

"file frankfurt airport skyline 2017 05 jpg"

"file london barge race 2 jpg"

"moustache seamless wallpaper design"

"st oswalds way and shops"

shops" Fi

		Flickr30K (1K test set)						
		in	$age \rightarrow t$	text	$text \rightarrow image$			
		R@1 R@5 R@10			R@1	R@5	R@10	
	ImageBERT	70.7	90.2	94.0	54.3	79.6	87.5	
Zara shat	UNITER	83.6	95.7	97.7	68.7	89.2	93.9	
Zero-shot	CLIP	88.0	98.7	99.4	68.7	90.6	95.2	
	ALIGN	88.6	98.7	99.7	75.7	93.8	96.8	
	GPO	88.7	98.9	99.8	76.1	94.5	97.1	
	UNITER	87.3	98.0	99.2	75.6	94.1	96.8	
Eine tuned	ERNIE-ViL	88.1	98.0	99.2	76.7	93.6	96.4	
Fine-tuned	VILLA	87.9	97.5	98.8	76.3	94.2	96.8	
	Oscar	_	-	_	-	-	_	
	ALIGN	95.3	99.8	100.0	84.9	97.4	98.6	

Figure 2. Example image-text pairs randomly sampled from the training dataset of ALIGN. One clearly noisy text annotation is marked in *italics*.

ALIGN

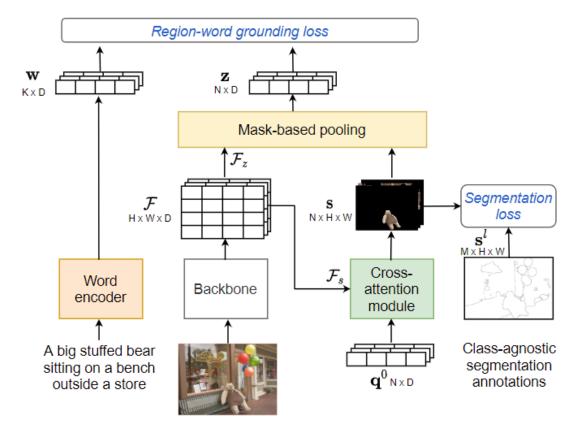
Table 1. Image-text retrieval results on Flickr30K and MSCOCO datasets (zero-shot and fine-tuned). ALIGN is compared with Image-BERT (Qi et al., 2020), UNITER (Chen et al., 2020c), CLIP (Radford et al., 2021), GPO (Chen et al., 2020a), ERNIE-ViL (Yu et al., 2020), VILLA (Gan et al., 2020), and Oscar (Li et al., 2020).

	Flickr30K (1K test set)				MSCOCO (5K test set)								
	in in	$age \rightarrow t$	ext	te	$xt \rightarrow im$	age	in	$age \rightarrow t$	text	te	$xt \rightarrow im$	age	
		R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
Zero-shot	ImageBERT	70.7	90.2	94.0	54.3	79.6	87.5	44.0	71.2	80.4	32.3	59.0	70.2
	UNITER	83.6	95.7	97.7	68.7	89.2	93.9	-	-	-	-	-	-
	CLIP	88.0	98.7	99.4	68.7	90.6	95.2	58.4	81.5	88.1	37.8	62.4	72.2
	ALIGN	88.6	98.7	99.7	75.7	93.8	96.8	58.6	83.0	89.7	45.6	69.8	78.6
	GPO	88.7	98.9	99.8	76.1	94.5	97.1	68.1	90.2	-	52.7	80.2	-
	UNITER	87.3	98.0	99.2	75.6	94.1	96.8	65.7	88.6	93.8	52.9	79.9	88.0
Fine-tuned	ERNIE-ViL	88.1	98.0	99.2	76.7	93.6	96.4	-	-	-	-	-	-
	VILLA	87.9	97.5	98.8	76.3	94.2	96.8	_	-	-	-	-	-
	Oscar	_	-	_	-	-	_	73.5	92.2	96.0	57.5	82.8	89.8
	ALIGN	95.3	99.8	100.0	84.9	97.4	98.6	77.0	93.5	96.9	59.9	83.3	89.8

Open-vocabulary Image Segmentation

- N object masks → N vision embed
- M words \rightarrow M text embed

• Similarity matrix, (N, M)



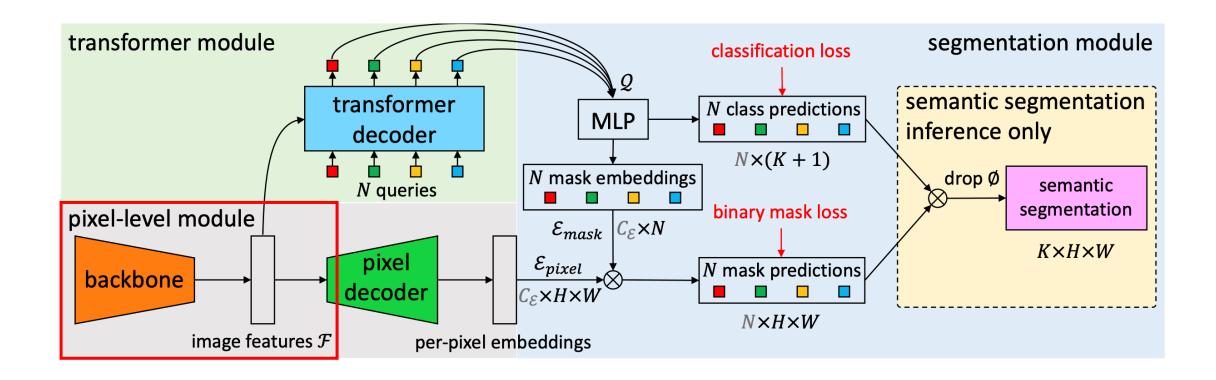
(c) OpenSeg (ours)

Dataset

- COCO Panoptic
- COCO Caption

a group of people riding horses down a small road.
a group of people are riding horses at a park.
people are riding their horses in the parade.
a group of riders on horses in a field.
a large crowd of people riding horses walks along a trail.

Vision Embed - Segmentation mask



Vision Embed- Mask based pooling

Pool(Feature [C, H, W] * Mask [H, W]) [C]

7.56	8.23	6.19	8.31	·	0	0	0	0
6.95	9.13	9.27	1.89		0	0	1	1
0.06	6.61	6.59	5.13	*	0	1	1	1
5.97	9.29	7.96	2.82		0	0	0	0

 0
 0
 0

 0
 0
 9.27
 1.89

 0
 6.61
 6.59
 5.13

 0
 0
 0
 0

C_1 Mask Mask_C_1

 $Vector_1 = (9.27 + 1.89 + 6.61 + 6.59 + 5.13) / 5$

Vision Embed

- 1. N maskformer query
- 2. Maskformer predict
 - N object mask. (Bsz, N, H, W)
- 3. Mask based pooling
 - N vision embedding. (Bsz, N, dim)

Text Embed

- 1. Image Caption.
 - "a group of people riding horses down a small road.". str
- 2. Extract Noun.
 - ['people', 'horses', 'road']. List[str]
- 3. Tokenize.
 - Token. List[List[Float]] (num_word, context_length)
- 4. Forward, ALIGN text encoder.
 - Embedding. Tensor. (Bsz, M, dim)

Grounding Loss - Similarity

Similarity

- $\langle z_i, w_j \rangle = \frac{z_i \cdot w_j}{\|z_i\| \|w_i\|}$
- All regions to one word $g(\mathbf{z}, w_j) = [\langle z_1, w_i \rangle, ..., \langle z_N, w_i \rangle] \in \mathbb{R}^{N \times 1}$
- Softmax at i-th element

$$\sigma(\mathbf{x})_i = \frac{e^{x_i/\tau}}{\sum_j e^{x_j/\tau}}$$

Image-Caption score

$$G(I_b,C_b) = \frac{1}{K} \sum_{j=1}^K \sum_{i=1}^N \sigma(g(\mathbf{z},w_j))_i \cdot \langle z_i,w_j \rangle$$
 weight similarity How j similar with i, compared with others

Grounding Loss

- Image-Caption score
 - Encourages each word to be grounded to one or a few region
- All images in a batch I to a caption C_b

$$G(\mathbf{I}, C_b) = [G(I_1, C_b), ..., G(I_{|B|}, C_b)] \in \mathbb{R}^{|B| \times 1}$$

- Caption to I_b $G(I_b, \mathbf{C}) = [G(I_b, C_1), ..., G(I_b, C_{|B|})] \in \mathbb{R}^{|B| \times 1}$
- Grounding Loss:

$$\mathcal{L}_{\mathcal{G}} = -\frac{1}{|B|} \sum_{b=1}^{|B|} \left(\log \sigma \left(G(\mathbf{I}, C_b) \right)_b + \log \sigma \left(G(I_b, \mathbf{C}) \right)_b \right)$$

Scale up the training data

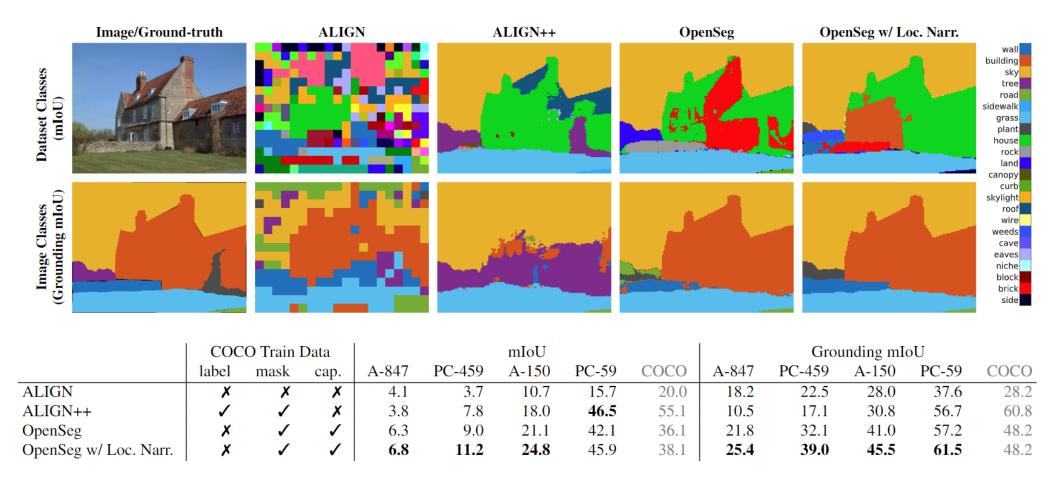
- 1. Train a teacher model on a segmentation dataset
- 2. Annotate with pseudo segmentation labels
- 3. Train with the mix of human and pseudo labels

- COCO
- Localized Narrative.
 - Contains detailed natural language descriptions along with mouse traces.
 - COCO, Flickr, Open Images, ADE20k.
 - 652k images for training

Training

- Batch size
 - 1024
- Max iter
 - 30k for COCO
 - 60k for COCO and Loc. Narr.
- Loss weight
 - 4:1, segmentation loss: grounding loss
- Keep probability of words extracted from captions
 - 0.75

Result



ALIGN++, add FPN, high resolution, per-pixel supervision.

Grounding mIoU, only uses the ground-truth classes in an image.

Ablation Study

	A-847	PC-459	A-150	PC-59
OpenSeg	6.3	9.0	21.1	42.1
- pred. masks	(-1.7) 4.6	(-3.1) 5.9	(-4.7) 16.4	(-10.0) 32.1
+ gt. masks	(+2.8) 9.1	(+3.3) 12.3	(+6.4) 27.5	(+7.2) 49.3

Table 4. **Incorporating predicted masks at inference improves mIoU accuracy.** Using the ground-truth masks can be seen as the performance upper bound when segmentation masks are perfectly predicted. The model is trained on COCO.

caption filter	A-847	PC-459	A-150	PC-59
all words	5.3	8.8	20.0	41.3
noun + adj. + verb	6.0	8.8	20.9	41.7
noun	6.3	9.0	21.1	42.1

Table 5. Using all words in training captions hurts performance. We show the mIoU performances with different text filtering to break a training caption into words. Using nouns only for training achieves the best results. The model is trained on COCO.