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Semi-supervised Learning(SSL)
What is SSL? SSL is concerned with the use of both the labelled
and unlabeled data for training.
Challenge: The design of methods that can exploit the information
contained in the distribution of the unlabeled data.
Assumption Cluster assumption, Low-density separation and
Manifold assumption.

Figure 1: The positive and negative signs show labeled examples from two
different classes. The circles depict the unlabeled examples. These
decision boundaries are moved to regions with lower density (solid line)
using unlabeled data.



Manifold learning

I Manifold learning assumes that the observed data lie on a
low-dimensional manifold embedded in a higher-dimensional
space.

I The manifold assumption states that the space of natural
images has the differential-geometric structure of a
low-dimensional manifold embedded in the high-dimensional
pixel space.

I It should be emphasized that manifold learning refers to a set
of methods based on the manifold assumption.



The taxonomy Deep Semi-supervised learning method.

I DSSL studies how to effectively utilize both labeled and
unlabeled data by deep neural networks.

I DSSL can be classified into five categories: generative methods,
consistency regularization methods, graph-based methods,
pseudo-labeling methods, and hybrid methods.



Consistency-based SSL

I Assume that the samples xi ∈ X ⊂ RD and the labels
yi ∈ Y ≡ {1, . . . ,C}. We have empirical risk minimization

L(θ) =
1

|DL|
∑
i∈IL

`(Fθ(xi ), yi ) +R(θ) (1)

I Consistency-based SSL algorithms regularize the learning by
enforcing that the learned function x 7→ Fθ(x) respects local
derivative and invariance constraints. In the Π-model, the
consistency regularization term can be written as follows:

R(θ) =
1

|D|
∑

i∈IL∪IU

Eω
{∥∥Fθ[Sω(xi )]−Fθ?(xi )

∥∥2}. (2)

Where θ? denotes a copy of the parameter θ, i.e. θ? = θ.



Consistency-based SSL

I To help propagating the information of labeled samples to
unlabeled samples, in the experiment, we have adopted instead
the following regularization term

R(θ) =
1

|DL|
∑
i∈IL

Eω
{∥∥Fθ[Sω(xi )]−Fθ?(xi )

∥∥2}
+

1

|DU |
∑
j∈IU

Eω
{∥∥Fθ[Sω(xj)]−Fθ?(xj)

∥∥2} (3)

I The quality and variety of the data-augmentation scheme
S : X × Ω→ X is pivotal to the success of consistency-based
SSL methods

I Designing good data-augmentation schemes is an efficient
manner of injecting expert/prior knowledge into the learning
process.



The contribution of paper

One sentence summary: This paper propose a simple and natural
framework leveraging the Hidden Manifold Model to study modern
SSL methods.

I We analyse consistency-based methods in setting where
analytically tractable low-dimensional can be obtained.

I We establish links with Manifold Tangent Classifiers and
demonstrate the consistency-based are more powerful.

I We propose an extension of the Hidden Manifold Model to
investigate the properties of consistency-based SSL methods.



Approximate Manifold Tangent Classifier

I Consider the data manifold M⊂ X ⊂ RD and the dimension
of M is 1 ≤ d ≤ D. For x ∈M, the tangent plane Tx is also
of dimension d with an orthonormal basis ex1, . . . , e

x
d ∈ RD .

Given small coefficients ω1, . . . , ωd ∈ R, the transformed
sample x ∈ X also lies, or is very close to, the data manifold
M. x is defined as

x = x +
d∑

j=1

ωj exj

I A possible stochastic data-augmentation scheme can therefore
be defined as Sω(x) = x + Vω where Vω =

∑d
j=1 ωj exj .

I To enforce that the function x → Fθ(x) is locally
approximately constant along the manifold M, one can thus
penalize the derivatives of Fθ at x in the directions Vω.



Approximate Manifold Tangent Classifier

I Denoting by Jx ∈ RC ,D the Jacobian with respect to x ∈ RD

of Fθ at x ∈M, this can be implemented by adding a
penalization term of the type Eω[‖Jx Vω‖2] = Tr

(
Γ⊗ JTx Jx

)
,

where Γ ∈ RD,D is the covariance matrix of the random vector
ω → Vω.

I For any x , ω ∈ X × Ω, Sε ω(x) = x + ε ,D(x , ω) +O(ε2), for
some derivative mapping D : X × Ω→ X , it follows that

lim
ε→0

1

ε2
Eω
[
‖Fθ[Sε ω(x)]−Fθ(x)‖2

]
= Eω

[
‖Jx D(x , ω)‖2

]
= Tr

(
Γx ,S ⊗ JTx Jx

)
where Γx ,S is the covariance matrix of the X -valued random
vector ω 7→ D(x , ω) ∈ X . This shows that consistency-based
methods can be understood as approximated Jacobian
regularization.



Manifold Tangent Classifier

I The MTC uses a Contractive-Auto-Encoder (CAE) to extract in
an unsupervised manner a good representation of the dataset.

I The CAE can subsequently be leveraged to obtain an
approximate basis of each tangent plane Txi for xi ∈ D, which
can then be used for penalizing the Jacobian of the mapping
x 7→ Fθ(x) in the direction of the tangent plane to M at x .

How to build and train a deep network with MTC method.

I Train a stack of K CAE+H layers. Each is trained in turn on
the representation learned by the previous layer.

I For each xi ∈ D compute the Jacobian of the last layer

representation ∂h(k)

∂x (xi ) and its SVD.Store the leading dM
singular vectors in set.

I On top of the K pre-trained layers, stack an output layer of
size the number of classes. Fine-tune the whole network, using
for each xi and tangent directions Bxi



Limitations

Somewhat simplistic approach consisting in adding an isotropic
Gaussian noise to the data samples is unlikely to deliver satisfying
results, Why?

I This mechanism does not take at all into account the
local-geometry of the data-manifold.

I It is equivalent to penalizing the Frobenius norm ‖Jx‖2F of the
Jacobian of the mapping x 7→ Fθ(x); in a linear model, that is
equivalent to the standard ridge regularization.

I Jacobian penalization techniques are not efficient at learning
highly non-linear manifolds that are common.



Limitations

In general, domain-specific data-augmentation schemes lead to
much better regularization than Jacobian penalization.
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Figure 2: Left: Jacobian (i.e. first order) Penalization method are
short-sighted and do not exploit fully the data-manifold Right:
Data-Augmentation respecting the geometry of the data-manifold.



Limitations

I Jacobian penalization techniques are not efficient at learning
highly non-linear manifolds.

I For example, in “pixel space”, a simple image translation is a
highly non-linear transformation only well approximated by a
first order approximation for very small translations.

I In other words, if x ∈ X represents an image and g(x , v) is its
translated version by a vector v , the approximation
g(x , v) ≈ x +∇vg(x), with
∇vg(x) ≡ limε→0 (g(x , ε v)− g(x)/ε, becomes poor as soon
as the translation vector v is not extremely small.



Limitations

I In computer vision, translations, rotations and dilatations are
often used as sole data-augmentation schemes: this leads to a
poor local exploration of the data-manifold since this type
transformations only generate a very low dimensional
exploration manifold.

I Enriching the set of data-augmentation degrees of freedom
with transformations such as elastic deformation or non-linear
pixel intensity shifts is crucial to obtaining a high-dimensional
local exploration manifold that can help propagating the
information on the data-manifold efficiently.



4. Asymptotic Properties



4.1 Fluid limit

I Consider the standard Π-model trained with a standard
Stochastic Gradient Descent (SGD). Denote by θt ∈ Θ the
current value of the parameter and η > 0 the learning rate. We
have

θk+1 = θk − η∇θ
{

1

|BL|
∑
i∈BL

`( Fθk (xi ), yi )

+
λ

|BL|
∑
j∈BL

∥∥∥Fθk (Sω[xj ])− fj

∥∥∥2
+

λ

|BU |
∑
k∈BU

∥∥∥Fθk (Sω[xk ])− fk

∥∥∥2}
(4)

for a parameter λ > 0 that controls the trade-off between
supervised and consistency losses, as well as subsets BL and BU
of labelled and unlabelled data samples, and fj ≡ Fθ?(xj) for
θ? ≡ θk .



4.2 Minimizers are harmonic functions

I Assume that M⊂ RD can be globally parametrized by
Φ : Rd →M⊂ RD . Consider a data-augmentation
Sεω(x) = Φ(z + εω) for z = Φ−1(x) and a sample ω from a
Rd -valued centred and isotropic Gaussian distribution. We
investigate the regime ε→ 0 and, the minimization of the
consistency-regularized objective

LL(θ) +
λ

ε2

∫
Rd

Eω
{∥∥Fθ[Sεω(Φ(z))]−Fθ(Φ(z))

∥∥2}µ(dz).

(5)

I As ε→ 0,the objective function approaches the quantity

G(fθ) ≡ 1

|DL|
∑
i∈IL

`(fθ(zi ), yi ) +λ

∫
Rd

‖∇z fθ(z)‖2 µ(dz). (6)



4.2 Minimizers are harmonic functions

I The generalization properties of consistency-based SSL
methods will typically be insensitive to this parameter, in the
regime of small data-augmentation at least.

I consistency-based SSL methods are indeed based on the same
principles as more standard graph-based approaches.



4.2 Minimizers are harmonic functions

Figure 3: Labelled data samples with class y = 0 (green triangle) and
y = +1 (red dot) are placed on the Left/Right boundary of the unit
square. Unlabelled data samples (blue stars) are uniformly placed within
the unit square. We consider a simple regression setting with loss function
`(f , y) = 1

2 (f − y)2. Left: Randomly initialized neural network. Middle:
labelled/unlabelled data Right: Solution of f obtained by training a
standard Π-model. It is the harmonic function f (u, v) = u.



4.3 Generative model for Semi-Supervised Learning

I The goal of this paper is to understand the mechanisms that
are at play when consistency-based SSL methods are used to
uncover the structures present in real datasets.

I It is important to build simplified and tractable generative
models of data that (1) respect these low-dimensional
structures and (2) allow the design of efficient
data-augmentation schemes.

I Follow the Hidden Manifold Model framework, the author
introduce a model of synthetic data concentrating near
low-dimensional structures and analyze the learning curve
associated to a class of two-layered neural networks.



Low-dimensional structure

I The mapping Φ is chosen to be a neural network with a single
hidden layer with H neurons.

I For z = (z1, . . . , zd) ∈ Rd , set Φ(z) = A1→2 ϕ(A0→1z + b1)
for matrices A0→1 ∈ RH,d and A1→2 ∈ RD,H , bias vector
b1 ∈ RH and non-linearity ϕ : R→ R applied element-wise.

I We adopt the standard normalization A0→1
i ,j = w

(1)
i ,j /
√
d and

A1→2
i ,j = w

(2)
i ,j /
√
H for weights w

(k)
i ,j drawn i.i.d from a centred

Gaussian distribution with unit variance.



Data augmentation

I consider the natural data-augmentation Sεω(xi ) = Φ(zi + εω),
where the sample ω ∈ Rd samples from an isotropic Gaussian
distribution with unit covariance and ε > 0.

I Sεω(xi ) belongs to the data-manifold M for any perturbation
vector ε ω. For any value of ε, the data-augmentation preserves
the low-dimensional manifold: perturbed samples Sεω(xi )
exactly lie on the data-manifold.

I The larger ε, the more efficient the data-augmentation scheme.



Neural architecture and optimization

I Fitting a two-layered neural network Fθ : RD → R by
minimising LL(θ) ≡ (1/|DL|)

∑
i `[Fθ(xi ), yi ] where

`(f , y) = log(1 + exp[−y f ]).

I Assume that |DL| = 10 labeled data pairs {xi , yi}i=IL , as well
as |DU | = 1000 unlabeled data samples. The ambient space
has dimension D = 100 and the data manifold M has
dimension d = 10

I For minimizing the consistency-based SSL objective
LL(θ) + λR(θ), we use the standard strategy consisting in first
minimizing the un-regularized objective alone LL for a few
epochs in order for the function Fθ to be learned in the
neighbourhood of the few labeled data-samples before
switching on the consistency-based regularization.
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Figure 4: Left: For a fixed data-augmentation scheme, generalization
properties for λ spanning two orders of magnitude. Right: Influence of the
quantity of the data-augmentation of the generalization properties.

I Much larger or smaller values of λ do lead to convergence and
stability issues.

I Too low an amount of data-augmentation (i.e. ε = 0.03) and
the final performance is equivalent to the un-regularized
method. Too large an amount of data-augmentation (i.e.
ε = 1.0) also leads to poor generalization properties.



Quality of the Data-augmentation
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Figure 5: Left: Learning curves (Test NLL) for data-augmentation
dimension k ∈ [5, 10] Right: Test NLL at epoch N = 200 (see left plot)
for data-augmentation dimension k ∈ [5, 10].

Consider a perturbation Sεω[k](xi ) = Φ(zi + ω[k]) for xi = Φ(zi )
where the noise term ω[k] is defined as follows. For a
data-augmentation dimension parameter 1 ≤ k ≤ d we have
ω[k] = (ξ1, . . . , ξk , 0, . . . , 0) for i.i.d standard Gaussian samples
ξ1, . . . , ξk ∈ R.



Mean-Teacher versus Π-model

I MT parameter: θavg,k = βMT θavg,k−1 + (1− βMT)θk for the
θavg,k with different scales βMT ∈ {0.9, 0.95, 0.99, 0.995}.
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Figure 6: Mean-Teacher (MT) learning curves (Test NLL) for different
values of the exponential smoothing parameter βMT ∈ (0, 1). For
βMT ∈ {0.9, 0.95, 0.99, 0.995}, the final test NLL obtained through the
MT approach is identical to the test NLL obtained through the Π-model.
In all the experiments, we used λ = 10 and used SGD with momentum
β = 0.9.



Comment of reviewer

I This paper provides some theoretical perspective on the use of
data augmentation in consistency regularization-based
semi-supervised learning.

I The framework used in the paper argues that high-quality data
augmentation should move along the data manifold.

I This generic view allows the paper’s ideas to be applied across
datasets (as opposed to image-specific data augmentation used
in state-of-the-art semi-supervised learning algorithms).
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