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Mixed Query Selection

€ Deformable-DETR select top K encoder features from the last encoder layer
as priors to enhance decoder queries.

In it, each pixel is assigned as an object query, which directly predicts a bounding box.
Top scoring bounding boxes are picked as region proposals.
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Mask-DINO: a unified object detection and segmentation framework
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Segmentation branch

m = q.  M(T(Cy) + F(C.)),

Masks

Unified query selection for mask
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Unified denoising for mask

» Noised GT boxes and their labels



Hybrid matching

@ the two heads can predict a pair of box and mask that are
inconsistent with each other

» both box and mask in bipartite matching to encourage more
accurate matching results

Decoupled box prediction

€ For the panoptic segmentation task, box prediction for "stuff"
categories is unnecessary and intuitively inefficient

» Remove box loss and box matching for “stuff” categories. The box
loss for “stuff” is set to the mean of “thing” categories.



test layer# | Mask DINO  Mask2Former

layer 0 | 39.6(+38.5) 1.1

layer 3 44.0 42.3
layer 6 45.9 43.3
layer 9 46.0 43.7

Feature scale | box AP mask AP Decoder layer# | Box AP Mask AP

single scale(1/8) 45.8 45.1 3 43.1 40.7
3 scales 50.5 45.8 6 44.3 41.1

4 scales 50.5 46.0 9 44.5 414
Table 8: Comparison of multi-scale fea- 12 44.8 411

tures for Transformer decoder under the Table 9: Decoder layer number comparison un-
50-epoch setting. Both detection and der the 12-epoch setting. Mask DINO benefits
segmentation benefit from more feature from more decoders, while DINO’s performance
scales. will decrease with 9 decoders.

Table 7: Effectiveness of our query selection for mask
initialization. We evaluate the instance segmentation
performance from different decoder layers in the same
model after training for 50 epochs.

Tasks Box AP ; | Epochs | PQ  PQ™m9  PQ*/ Box APL" ~ Mask AP]”
B M k 12 50 Mask AP pan pan
0X Mask | 12ep i w/o decouple | 12 47.9 540  38.8 42.8 39.6
v 45.1 50.1 - w/ decouple 12 49.0+1.1) 54.8 40.2 43.2 40.4
4 - 43.3
L , w/o decouple 50 52.7 58.8 43.5 48.7 44.1
¥ & | 45 S05p0m 460w w/decouple | 50 | 53.0003 591 439 48.8 443

Table 10: Task comparison under the 50-epoch setting.
We train the same Mask DINO with different tasks and
validate that box and mask can achieve mutual coopera-
tion.

Table 11: Effectiveness of decoupled box prediction for panoptic segmentation under the
12-epoch and 50-epoch settings.

Matching Box AP Mask AP | Box AP Mask AP
Box Mask | ‘ M ‘
ask DINO (ours) | 445 41.4
"

v v iég ;lgjl — DINO Mask branch* 49.57 357 (s

v 7 44.5 41.4 — Unified query selection for masks 43.6 40.3 -1.n)

, _ — Unified denoising for masks 44.6 40.7 0.7

Table 12: Matching method comparison un- _ Hybrid matching 44 4 505 o,

der the 12-epoch setting. We train both tasks
together but use different matching methods
to verify the effectiveness of hybrid matching.

Table 13: Comparison of the proposed components under the 12-epoch
setting. * indicates that we use the original DETR [2] segmentation branch
in Mask DINO, where we follow DETR to fine-tune segmentation after fin-
ishing training detection. T the performance of detection drops (49.6 AP as
shown in Table @when only training detection) after training segmentation.



Backbone Pre-training

Detection Pre-training

val

Method Params| Backbone Dataset Dataset W TTA W TTA
Instance segmentation on COCO AP
Mask2Former [4] 216M SwinL IN-22K-14M = 50.1 -
Soft Teacher [36] 284M SwinL IN-22K-14M 0365 51.9 52.5
SwinV2-G-HTC++ [23] 3.0B | SwinV2-G | IN-22K-ext-70M [23] 0365 53.4 53.7
MasK DINO(Ours) 223M SwinL IN-22K-14M 0365 54.5(+1.1) —
Panoptic segmentation on COCO PQ
Panoptic SegFormer [19] —M SwinL IN-22K-14M — 55.8 —
Mask2Former [4] 216M SwinlL IN-22K-14M - 57.8 -
MasK DINO (ours) 223M SwinL IN-22K-14M 0365 59.4(+1.6) —
Semantic segmentation on ADE20K mloU
Mask2Former [4] 215M SwinLL IN-22K-14M — 56.1 57.3
Mask2Former [4] 217M |SwinL-FaPN IN-22K-14M — 56.4 57.7
SeMask-L MSFaPN-Mask2Former [14]| —M |SwinL-FaPN IN-22K-14M — — h&8.2
SwinV2-G-UperNet [23] 3.0B | SwinV2-G | IN-22K-ext-70M [23] — 59.3 59.9
MasK DINO (ours) 223M SwinL IN-22K-14M 0365 59.5  60.8(+0.9)

Table 6: Comparison of the SOTA models on three segmentation tasks. Mask DINO outperforms all
existing models. "TTA" means test-time-augmentation. “O365” denotes the Objects365 [31] dataset.



