NeurIPS 2022?

MILAN: Masked Image Pretraining on Language Assisted Representation

Zejiang Hou1Fei Sun2Yen-Kuang Chen2Yuan Xie2Sun-Yuan Kung11Princeton University2DAMO Academy, Alibaba Group

Mengxue

Preview

- Fully-supervised → Self-supervised
- Reconstruction based self-supervised pretraining

BERT

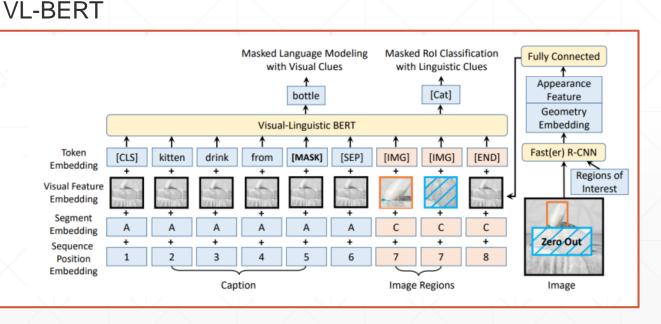
- Masked Data Modeling
 - NLP → BERT
 - MLM (Masked Language Modeling)
 - V-L \rightarrow VL-BERT/ViLBERT

MLM

- MIM (Masked Image Modeling)
- $CV \rightarrow MAE$

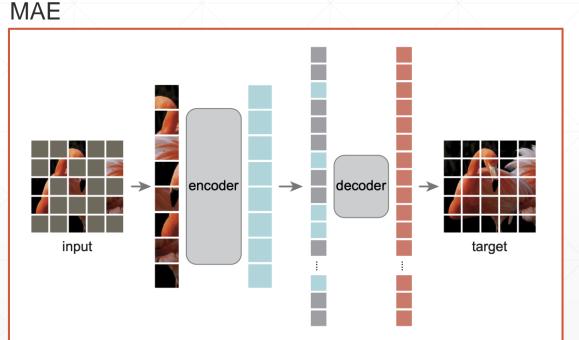
- MIM

•


	Input	[CLS] my dog is cute [SEP] he likes play ##ing [SEP]					
\leq	Token Embeddings	$\begin{bmatrix} E_{[CLS]} & E_{my} & E_{dog} & E_{is} & E_{cute} & E_{[SEP]} & E_{he} & E_{likes} & E_{play} & E_{\sharp \neq ing} & E_{[SEP]} \end{bmatrix}$					
	Segment Embeddings	$E_{A} = E_{A} = E_{A} = E_{A} = E_{A} = E_{B} = E_{B$					
	Position Embeddings	$\begin{bmatrix} E_0 & E_1 & E_2 & E_3 & E_4 & E_5 & E_6 & E_7 & E_8 & E_9 & E_{10} \end{bmatrix}$					
/							
	→ 上游任务: Mask Language Modelling & Next Sentence Prediction						
	→ 下游任务: 句子对分类任务、单句子分类任务、问答任务、单句标注任务						

Preview

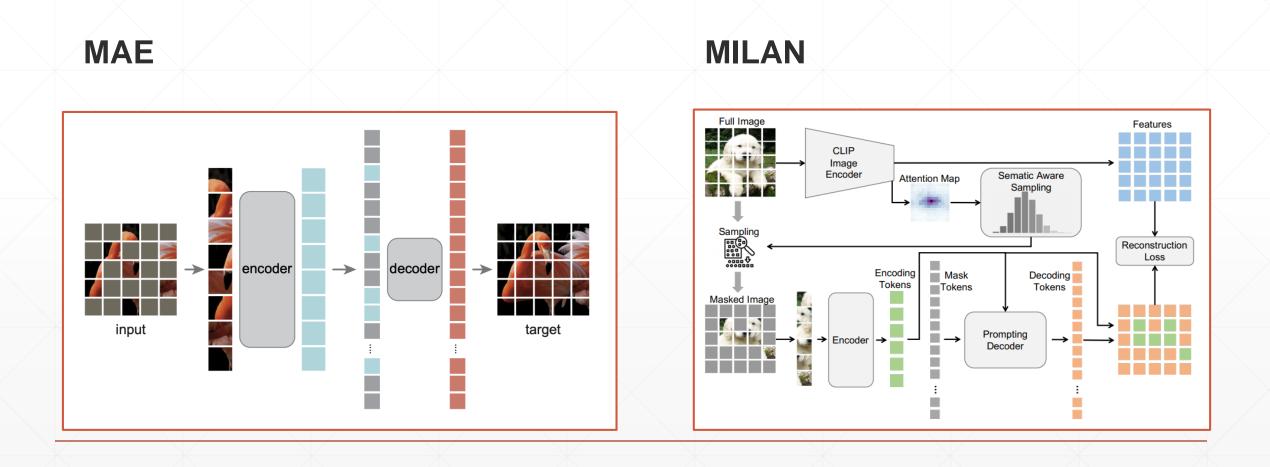
- Fully-supervised → Self-supervised
- Reconstruction based self-supervised pretraining
- Masked Data Modeling
 - NLP → BERT
 - MLM (Masked Language Modeling)
 - V-L \rightarrow VL-BERT/ViLBERT
 - MLM
 - MIM (Masked Image Modeling)
 - $CV \rightarrow MAE$


- MIM

•

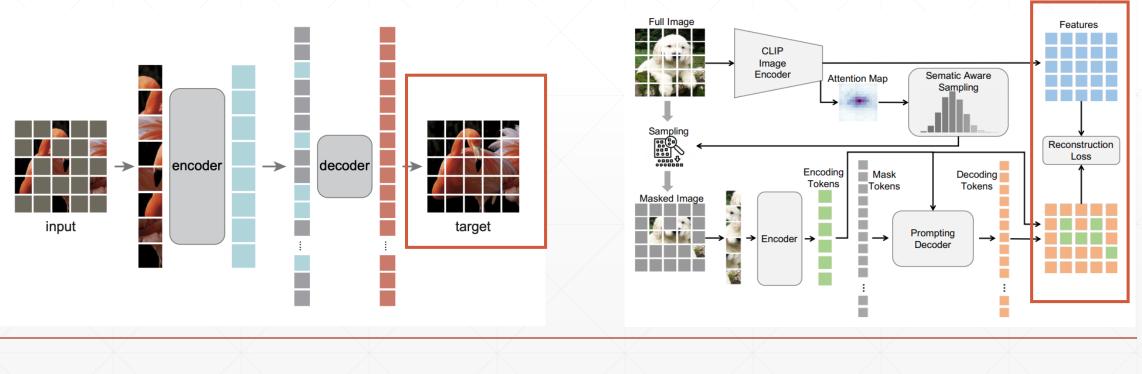
Preview

- Fully-supervised → Self-supervised
- Reconstruction based self-supervised pretraining
- Masked Data Modeling
 - NLP → BERT
 - MLM (Masked Language Modeling)
 - V-L \rightarrow VL-BERT/ViLBERT
 - MLM
 - MIM (Masked Image Modeling)
 - $CV \rightarrow MAE$


- MIM

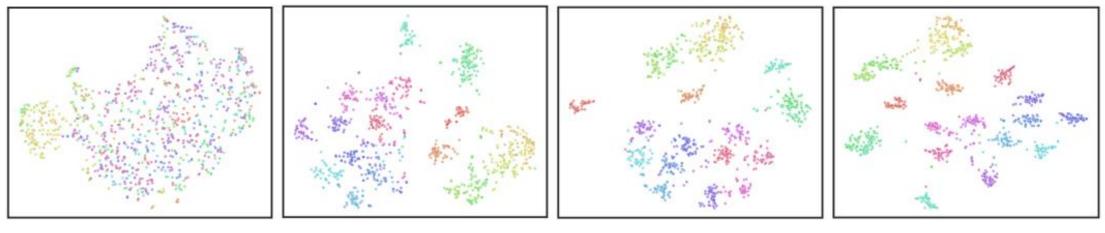
•

Introduction


- In this work, we analyze three highly correlated aspects in MAE(masked autoencoders):
 - the reconstruction target
 - the decoder design
 - the mask sampling strategy
- We propose a new approach called MILAN, which performs masked image pretraining on language assisted representations.

Predict Target / Sampling strategy / Decoder Design

Predict Target / Sampling strategy / Decoder Design


- Predict Target
 - MAE: raw pixels
 - MILAN: latent representations obtained with language guidance $\mathcal{L}_{\xi,\nu} = (1/N) \cdot \sum_{j=1}^{N} \|\bar{p}_j \bar{t}_j\|_2^2$.

Methodology Reconstruction target: language assisted representation

• Why use CLIP feature as targets?

→ The learned representations are better clustered for different categories

(a) MAE pretrained

(b) CLIP image encoder

(c) MILAN pretrained

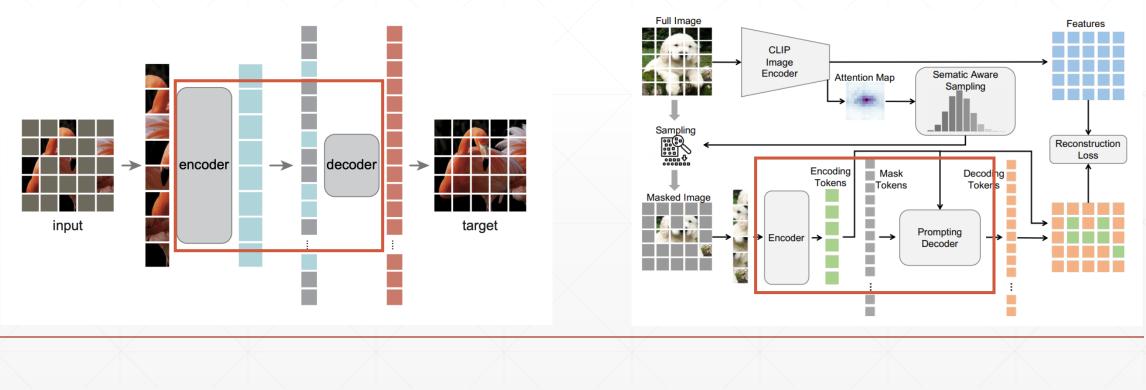
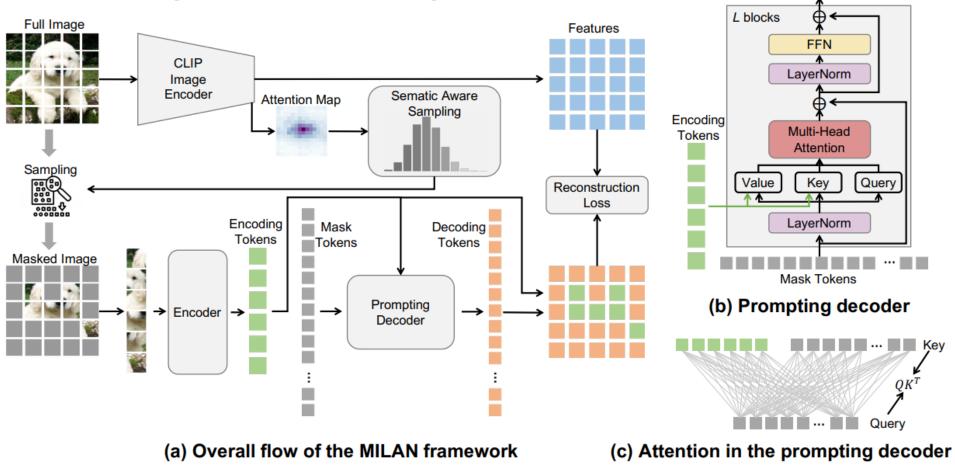

(d) MILAN finetuned

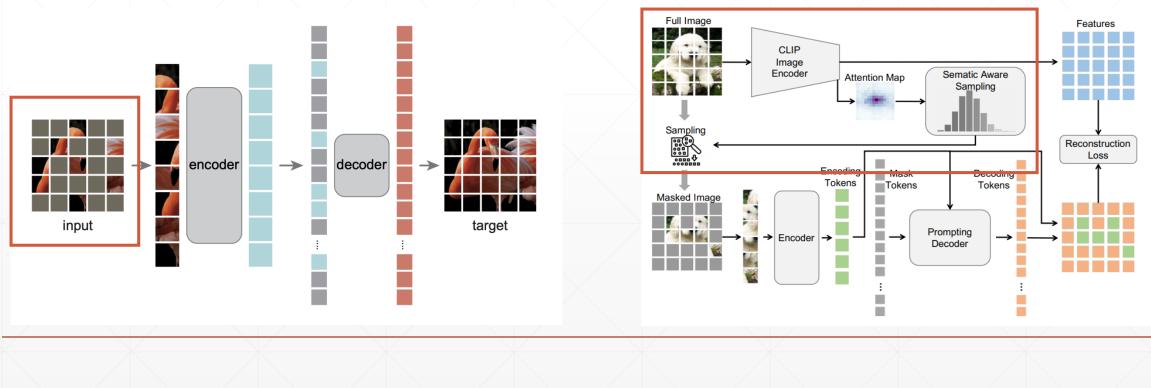
Figure 2: t-SNE visualization of the learned features from ViT-B/16 obtained by different pretraining methods. We plot the features before the final linear head. We use images of randomly sampled 20 classes in ImageNet-1K validation split.


Predict Target / Sampling strategy / Decoder Design

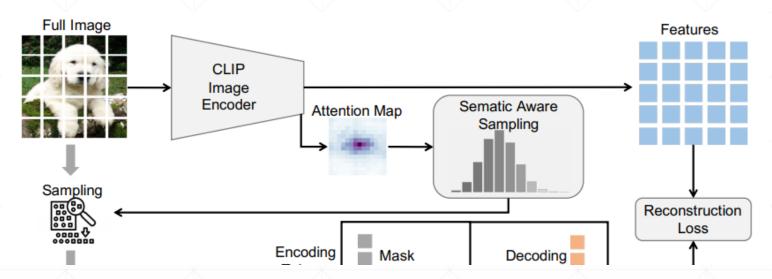
Decoder Design

- MAE: normal encoder-decoder, both update
- MILAN: prompting decoder, does not update the encoder (more efficient)

Methodology Decoder design: prompting decoder



Using the default 75% masking ratio, our prompting decoder reduces the computation cost by **20%** compared to MAE [25].


Predict Target / Sampling strategy / Decoder Design

Sampling strategy

- MAE: uniform sampling
- MILAN: mask sampling (more adapted to patches' discriminativeness)

Methodology Masking strategy: semantic aware sampling

CLIP image encoder by $[\mathbf{z}_{class}; \mathbf{z}_1; ...; \mathbf{z}_N] \in \mathbb{R}^{(N+1) \times d}$

 $\mathbf{s}_{\text{class}} = \operatorname{softmax}(\mathbf{q}_{\text{class}}\mathbf{K}^T/\sqrt{d}),$

 $\mathbf{q}_{\text{class}} = \mathbf{z}_{\text{class}} W_q$

 $\mathbf{K} = [\mathbf{z}_{\text{class}}; \mathbf{z}_1; ...; \mathbf{z}_N] W_k$

Because the class token from the last layer of the CLIP image encoder is used to align with the text embedding from the text encoder

Sclass reflects how much information one image patch contributes to the output features of the CLIP image encoder.

Experiments

- We pretrain the ViT-B/16 and ViT-L/16 models using MILAN method on ImageNet-1K dataset for 400 epochs using PyTorch framework on A100 machines.
- We use the ViT-B/16 CLIP image encoder obtained from OpenAl' s paper [43] to produce the reconstruction targets when pretraining both ViT-B/16 and ViT-L/16 models.

Experiments Classification on ImageNet-1K

Method	Training data	Resolution	ViT-B/16		ViT-L/16	
Method			Epochs	Top-1 (%)	Epochs	Top-1 (%)
Supervised [50]	IN1K	224	-	83.8 (+1.6)	-	84.9 (+1.8)
contrastive or clu	stering based					
MoCov3 [11]	IN1K	224	300	83.2 (+2.2)	300	84.1 (+2.6)
DINO [6]	IN1K	224	400	82.8 (+2.6)	-	-
iBOT [69]	IN22K+IN1K	224	320	84.4 (+1.0)	200	86.3 (+0.4)
reconstruction based						
BEiT [3]	DALLE250M+IN22K+IN1K	224	150	83.7 (+1.7)	150	86.0 (+0.7)
mc-BEiT [33]	OpenImages9M+IN1K	224	800	84.1 (+1.3)	800	85.6 (+1.1)
PeCo [18]	IN1K	224	800	84.5 (+0.9)	800	86.5 (+0.2)
SimMIM [61]	IN1K	224	800	83.8 (+1.6)	-	-
MaskFeat [56]	IN1K	224	1600	84.0 (+1.4)	1600	85.7 (+1.0)
data2vec [2]	IN1K	224	800	84.2 (+1.2)	1600	86.6 (+0.1)
CAE [9]	IN1K	224	800	83.6 (+1.8)	-	-
MAE [25]	IN1K	224	1600	83.6 (+1.8)	1600	85.9 (+0.8)
language-image pretraining based						
CLIP [43]	OpenAI400M+IN1K	224	-	82.1 (+3.3)	-	85.3 (+1.4)
MVP [57]	OpenAI400M+IN1K	224	300	84.4 (+1.0)	300	86.3 (+0.4)
MILAN	OpenAI400M+IN1K	224	400	85.4	400	86.7
Supervised [19]	JFT300M+IN1K	384	90	84.2 (+2.2)	90	87.1 (+0.2)
BEiT [3]	DALLE250M+IN1K	384	800	84.6 (+1.8)	800	86.3 (+1.0)
SWAG [47]	IG3.6B+IN1K	384	2	85.3 (+1.1)	-	-
MILAN	OpenAI400M+IN1K	384	400	86.4	400	87.3

Table 1: Comparison of the **finetuning** top-1 accuracy on ImageNet-1K dataset. All models are pretrained with 224×224 input resolution. We compare finetuning with both 224×224 and 384×384 resolutions. "Epochs" refer to the pretraining epochs. "-": not reported by the original paper.

Experiments Downstream tasks

- Object detection and instance segmentation on COCO
- Semantic segmentation on ADE20K

Method	Epochs	Detection AP _{box}	Instance Segmentation AP _{mask}	Semantic Segmentation mIoU
Supervised [27, 59]	-	47.9 (+4.7)	42.9 (+2.6)	47.4 (+5.3)
MoCov3 [11]	300	47.9 (+4.7)	42.7 (+2.8)	47.3 (+5.4)
DINO [6]	300	46.8 (+5.8)	41.5 (+4.0)	47.2 (+5.5)
BEiT [3]	300	42.6 (+10.)	38.8 (+6.7)	45.7 (+7.0)
PeCo [18]	300	43.9 (+8.7)	39.8 (+5.7)	46.7 (+6.0)
SplitMask [20]	300	46.8 (+5.8)	42.1 (+3.4)	45.7 (+7.0)
CAE [9]	800	49.2 (+3.4)	43.3 (+2.2)	48.8 (+3.9)
MAE [25]	1600	50.3 (+2.3)	44.9 (+0.6)	48.1 (+4.6)
MILAN	400	52.6	45.5	52.7

Table 3: Results of object detection and instance segmentation are obtained by using Mask R-CNN on COCO dataset with an input resolution of 1024×1024 . Semantic segmentation results are obtained by using UperNet on ADE20K with an input resolution of 512×512 . All methods use ViT-B/16 pretrained on ImageNet-1K dataset as the backbone. "Epochs" refer to the pretraining epochs.

Experiments Ablation study

	CLIP target	Prompting decoder	Semantic aware sampling	Epochs	Top-1 (%)
#1		Baseline (MA	400 (1600)	83.0 (83.6)	
#2	\checkmark			400	83.9
#3		\checkmark		400	83.0
#4			\checkmark	400	83.3
#5		\checkmark	\checkmark	400	83.3
#6	\checkmark		\checkmark	400	84.1
#7	\checkmark	\checkmark		400	85.1
#8	\checkmark	\checkmark	\checkmark	400 (1600)	85.4 (85.6)
#9	SLIP target	\checkmark	\checkmark	400	84.4

Table 4: Ablation study of different components in MILAN. All results are obtained by pretraining and finetuning ViT-B/16 model on ImageNet-1K dataset at 224×224 resolution.

Experiments Visualization

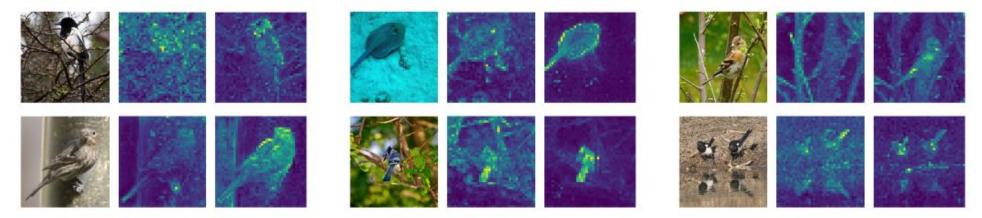


Figure 3: Visualization of original images (left), and the attention features extracted from the last self-attention layer of ViT-B/16 model pretrained by MAE (middle) and MILAN (right).

Figure 4: Visualization of the original images (left), masked images by the semantic aware sampling strategy with 75% masking ratio (middle), and the reconstruction loss patch-by-patch (right). For the plots of reconstruction loss, darker green colors indicate higher loss values. As shown, both unmasked patches and masked foreground patches have lower losses.

Limitation

- Similar to [3, 9, 33] which rely on external datasets to train their image tokenizers, the reconstruction target in MILAN is obtained from the CLIP model which also requires an extra image-text dataset. Training the CLIP model, if it is not amortized for many downstream tasks, is considered an extra training step.
- Moreover, we recognize that our improvements on ViT-L is not as significant as those on ViT-B. This may be because we employ the ViT-B version of the CLIP image encoder to produce the reconstruction targets for training both ViT-B and ViT-L for the sake of computational efficiency.

Thanks