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Introduction

* In this work, we analyze three highly correlated aspects in
MAE(masked autoencoders):

= the reconstruction target
- the decoder design
- the mask sampling strategy

- We propose a new approach called MILAN, which performs
masked image pretraining on language assisted representations.




Methodology—Difference in MAE & MILAN

Predict Target / Sampling strategy / Decoder Design
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Methodology—Difference in MAE & MILAN

Predict Target

* Predict Target
- MAE: raw pixels
- MILAN: latent representations obtained with language guidance < -0m-¥_ 17t
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Methodology
Reconstruction target: language assisted representation

- Why use CLIP feature as targets?
- The learned representations are better clustered for different categories

Py W
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(a) MAE pretrained (b) CLIP image encoder (c) MILAN pretrained (d) MILAN finetuned

Figure 2: t-SNE visualization of the learned features from ViT-B/16 obtained by different pretraining
methods. We plot the features before the final linear head. We use images of randomly sampled 20
classes in ImageNet-1K validation split.




Methodology—Difference in MAE & MILAN

Decoder Design

- Decoder Design
- MAE: normal encoder-decoder, both update
- MILAN: prompting decoder, does not update the encoder (more efficient)
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Methodology

Decoder design: prompting decoder
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(a) Overall flow of the MILAN framework

Using the default 75% masking

FIE R - BIET Query
(c) Attention in the prompting decoder

ratio, our prompting decoder reduces the computation cost by 20%

compared to MAE [25].



Methodology—Difference in MAE & MILAN

- Sampling strategy
« MAE: uniform sampling

Sampling strategy

- MILAN: mask sampling (more adapted to patches’ discriminativeness)
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Methodology

Masking strategy: semantic aware sampling
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Because the class token from the last layer of
the CLIP image encoder is used to align with the
text embedding from the text encoder

Sclass reflects how much information one image
patch contributes to the output features of the
CLIP image encoder.




Experiments

= We pretrain the ViT-B/16 and ViT-L/16 models using MILAN

method on ImageNet-1K dataset for 400 epochs using PyTorch
framework on A100 machines.

= We use the ViT-B/16 CLIP image encoder obtained from OpenAl’ s

paper [43] to produce the reconstruction targets when pretraining
both ViT-B/16 and ViT-L/16 models.




Experiments
Classification on ImageNet-1K

- . ViT-B/16 ViT-L/16
Method Training data Resolution Epochs Top-1 (%) Epochs Top-1 (%)
Supervised [50] IN1K 224 - 83.8(+1.0) - 84.9 (+1.8)
contrastive or clustering based
MoCov3 [11] INIK 224 300 83.2(+2.2) 300 84.1(+2.0)
DINO [6] INIK 224 400 82.8(+2.0) - -
iBOT [69] IN22K+IN1K 224 320 84.4(+1.0) 200 86.3(+0.4)
reconstruction based
BEIT [3] DALLE250M+IN22K+INIK 224 150 83.7(+1.7) 150 86.0(+0.7)
mc-BEIT [33] Openlmages9M+IN 1K 224 800 84.1(+1.3) 800 856(+I.1)
PeCo [18] INIK 224 800 84.5(+0.9) 800 86.5(+0.2)
SimMIM [61] INIK 224 800 83.8(+1.0) - -
MaskFeat [56] INIK 224 1600 84.0(+1.4) 1600 B85.7(+1.0)
data2vec 2] INTK 224 800 842(+1.2) 1600 B86.6(+0.1)
CAE [9] INIK 224 800 83.6(+1.8) - -
MAE [25] INIK 224 1600 83.6(+1.8) 1600 859 (+0.8)
language-image pretraining based
CLIP [43] OpenAT400M+IN1K 224 - 82.1 (+3.3) - 853 (+1.4)
MVP [57] OpenAI400M+IN1K 224 300 844 (+1.0) 300 86.3(+0.4)
MILAN OpenAI400M+IN1K 224 400 854 400 86.7
Supervised [19] JFT300M+IN1K 384 90 842 (+2.2) 90 87.1(+0.2)
BEIT [3] DALLE250M+IN1K 384 800 84.6(+1.8) 800 86.3(+1.0)
SWAG [47] IG3.6B+IN1K 384 2 853 (+1.1) - -
MILAN OpenAl400M+IN1K 384 400 86.4 400 87.3

Table 1: Comparison of the finetuning top-1 accuracy on ImageNet-1K dataset. All models are
pretrained with 224 %224 input resolution. We compare finetuning with both 224 x224 and 384 x 384

@ 3,

resolutions. “Epochs” refer to the pretraining epochs. “-”: not reported by the original paper.




Experiments
Downstream tasks

= Object detection and instance segmentation on COCO

= Semantic segmentation on ADE20K

Method Epochs Detection Instance Segmentation Semantic Segmentation

APhox APk mloU
Supervised [27, 59] - 47.9 (+4.7) 42.9 (+2.6) 47.4 (+5.3)
MoCov3 [11] 300 47.9 (+4.7) 42.7 (+2.8) 473 (+5.4)
DINO [6] 300 46.8 (+5.8) 41.5 (+4.0) 47.2 (+5.5)
BEIiT [3] 300 42.6 (+10.) 38.8 (+6.7) 45.7 (+7.0)
PeCo [18] 300 43.9 (+8.7) 39.8 (+5.7) 46.7 (+6.0)
SplitMask [20] 300 46.8 (+5.5) 42.1 (+3.4) 45.7 (+7.0)
CAE [9] 800 49.2 (+3.4) 43.3 (+2.2) 48.8 (+32.9)
MAE [25] 1600 50.3 (+2.3) 44 9 (+0.6) 48.1 (+4.6)
MILAN 400 52.6 45.5 52.7

Table 3: Results of object detection and instance segmentation are obtained by using Mask R-CNN on
COCO dataset with an input resolution of 1024 x1024. Semantic segmentation results are obtained

by using UperNet on ADE20K with an input resolution of 512x512. All methods use ViT-B/16
pretrained on ImageNet-1K dataset as the backbone. “Epochs” refer to the pretraining epochs.



Experiments

Ablation study

CLIP target Prompting decoder Semantic aware sampling | Epochs Top-1 (%)
#1 Baseline (MAE) 400 (1600)  83.0 (83.6)
#2 v 400 83.9
#3 v 400 83.0
#4 v 400 83.3
#5 v v 400 83.3
#6 v v 400 84.1
#7 v v 400 85.1
#8 v v v 400 (1600)  85.4 (85.6)
#9  SLIP target v v 400 84.4

Table 4: Ablation study of different components in MILAN. All results are obtained by pretraining
and finetuning ViT-B/16 model on ImageNet-1K dataset at 224 x224 resolution.




Experiments

Figure 3: Visualization of original images (left), and the attention features extracted from the last
self-attention layer of ViT-B/16 model pretrained by MAE (middle) and MILAN (right).

it

Figure 4: Visualization of the original images (left), masked images by the semantic aware sampling
strategy with 75% masking ratio (middle), and the reconstruction loss patch-by-patch (right). For
the plots of reconstruction loss, darker green colors indicate higher loss values. As shown, both
unmasked patches and masked foreground patches have lower losses.



Limitation

= Similar to [3, 9, 33] which rely on external datasets to train their image tokenizers,
the reconstruction target in MILAN is obtained from the CLIP model which also
requires an extra image-text dataset. Training the CLIP model, if it is not
amortized for many downstream tasks, is considered an extra training step.

- Moreover, we recognize that our improvements on ViT-L is not as significant as
those on ViT-B. This may be because we employ the ViT-B version of the CLIP
image encoder to produce the reconstruction targets for training both ViT-B and
ViT-L for the sake of computational efficiency.







