Effective Adaptation in Multi-Task Co-Training for Unified Autonomous Driving

Xiwen Liang^{1*}, Yangxin Wu^{1*}, Jianhua Han², Hang Xu², Chunjing Xu², Xiaodan Liang^{1†}
¹Shenzhen Campus of Sun Yat-Sen University, ²Huawei Noah's Ark Lab
{liangxw29@mail2, wuyx29@mail2, liangxd9@mail}.sysu.edu.cn,
{hanjianhua4, xu.hang, xuchunjing}@huawei.com

Presented by Weiqi

Motivation

- No universal pre-training & pre-training is resource-intensive
- A bridge between pre-training and finetuning

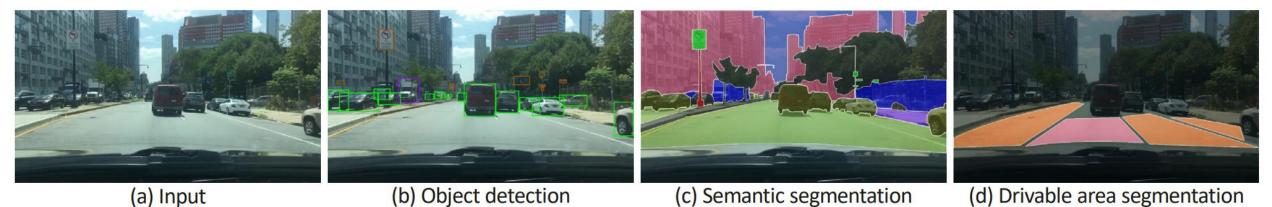


Figure 1: Our multi-task model takes (a) an RGB image as input and tackles (b) traffic object detection, (c) semantic segmentation, and (d) drivable area segmentation simultaneously.

Setting

- Holistic understanding of multiple downstream tasks
 - Tasks: semantic & drivable area segmentation, traffic object detection
 - Extracting features with better **transferability**
 - Pretrain-finetune V.S. pretrain-adapt-finetune
 - Poor performance due to distinction of training objectives & architecture design
 - **Prompt-based adaption:** learnable task-specific prompting and L2V alignment
- Novelty
 - Adapt stage & unchanged backbone (few training cost in FPN)
 - LV-Adapter benefits downstream tasks

Setting

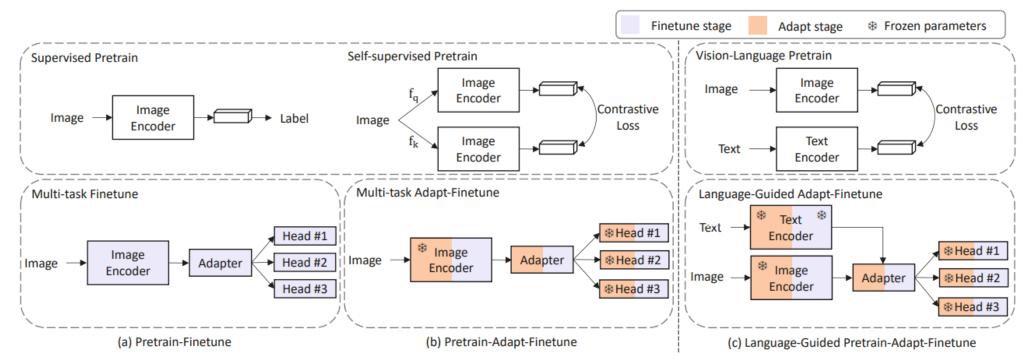


Figure 2: Comparisons of the conventional *pretrain-finetune* paradigm and our proposed *pretrain-adapt-finetune* paradigm. The language-guided *pretrain-adapt-finetune* paradigm further incorporates language priors into multiple downstream tasks.

Pipeline

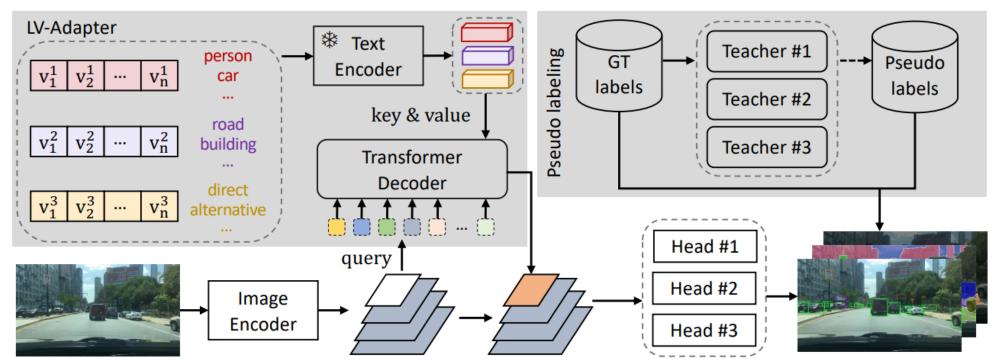


Figure 3: An overview of our proposed model. We first train three specialized teacher on labeled data to generate pseudo labels for each task. The multi-task model is then trained on both ground-truth and pseudo labels under the language-guided *pretrain-adapt-finetune* paradigm.

Details

- Each task share the same backbone with task-specific head
 - Backbone&neck:
 - ResNet, FPN
 - Seg Head:
 - MaskFormer
 - Det Head
 - Sparse R-CNN

Adapt stage

Teacher model to generate pseudo labels:

- Teacher: trained with few labeled for each task
- Pseudo label: prediction of unlabeled data by teacher

Student model trained with both gTruth and pseudo label:

• Language-guided pretrain-adapt-finetune paradigm:

$$\mathcal{L}_{total} = \alpha_{det} \mathcal{L}_{det} + \alpha_{sem} \mathcal{L}_{sem} + \alpha_{driv} \mathcal{L}_{driv}$$

L2V: language guided

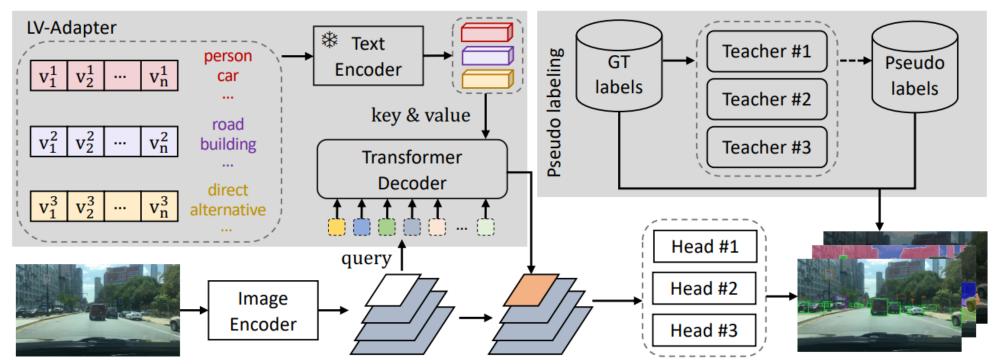


Figure 3: An overview of our proposed model. We first train three specialized teacher on labeled data to generate pseudo labels for each task. The multi-task model is then trained on both ground-truth and pseudo labels under the language-guided *pretrain-adapt-finetune* paradigm.

L2V: language guided

- LV-Adapter
 - Task-specific prompts: learnable template(from CoOp) for each task

$$\hat{\mathcal{T}}_{e,i} = \text{L2}_{\text{NORM}}(\text{TE}([\mathbf{v}^t, \mathbf{n}_i]))$$

- ni: embedding of the class name
- vt: task-specific learnable contexts t-task
- Language-aware context(cross-attention)

$$\mathcal{A}_{L\to V}(\hat{\mathcal{T}}_e, \mathbf{z}_5) = \text{TransDecoder}(q = \mathbf{z}_5, k = \hat{\mathcal{T}}_e, v = \hat{\mathcal{T}}_e),$$

- Z5: last feature map of P5 (strides=32 pyramidal feature from FPN)
- Output <u>Z5</u> to update Z5, thus FPN is linguistic-aware, and then connected to task-specific heads.

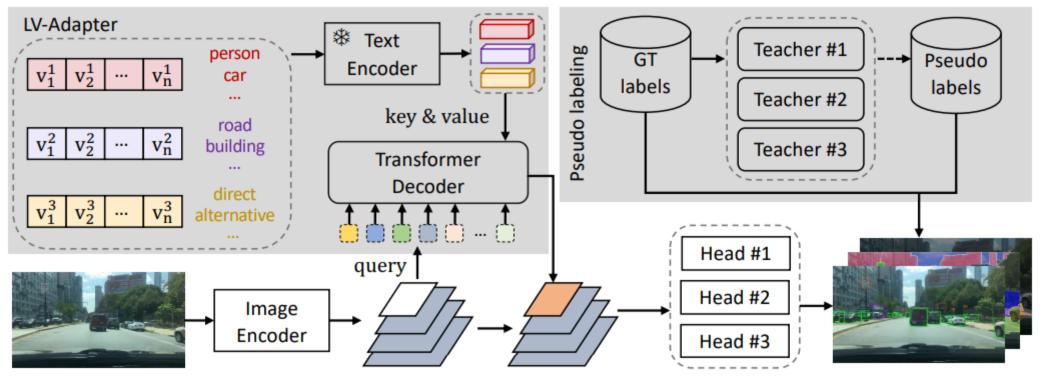


Figure 3: An overview of our proposed model. We first train three specialized teacher on labeled data to generate pseudo labels for each task. The multi-task model is then trained on both ground-truth and pseudo labels under the language-guided *pretrain-adapt-finetune* paradigm.

Experiment

- BDD100K
 - 100k videos of 40s, annotations at a flip of second 10
 - 67K training images: object detection and drivable area segmentation (no ss)
 - 4k training images: semantic segmentation (no od, das)
 - 3K training images: object detection, drivable area segmentation, semantic segmentation
- Disjoint-normal
 - drivable area segmentation (20k), object detection (10k), semantic segmentation (7k).

Experiment

• Comparation of multi-task training methods

Table 1: Comparisons of popular multi-task training methods and our proposed LV-Adapter under the Disjoint-normal setting.

Method	mIoU (SS)	mIoU (DA)	mAP	AP50	AP75
Zeroing loss [46]	59.4	83.3	23.0	46.0	19.8
Uniform sampler [24]	59.9	83.2	24.3	47.0	21.8
Weighted sampler [24]	59.8	83.2	24.2	46.9	21.4
Round-robin [24]	60.7	83.1	24.2	47.0	21.5
Self-training [13]	60.3	83.1	24.9	48.1	22.2
LV-Adapter (Ours)	62.2	83.7	26.4	50.5	23.7

$$\mathcal{L}_{total} = \alpha_{det} \mathcal{L}_{det} + \alpha_{sem} \mathcal{L}_{sem} + \alpha_{driv} \mathcal{L}_{driv}$$

Object Detection Semantic Seg. Drivable Seg. Type Model mIoU pACC mIoU pACC mAP AP50 AP75 23.117.8 48.6 70.8 92.0 25.8 49.5 MoCo-v1 [17] 59.2 93.2 96.9 23.0 83.6 25.9 50.0 10.3 19.8 73.4 26.023.2 93.5 50.1 MoCo-v2 [4] 61.2 93.4 83.8 96.9 26.150.4 23.4 Classification-oriented 60.3 93.3 83.5 25.4 22.5 96.8 48.9 SimCLR [3] 60.1 93.2 83.5 96.8 25.2 48.9 22.3 23.0 45.9 71.1 82.0 96.5 25.6 49.1 SwAV^[2] 61.1 93.3 83.1 96.7 25.6 49.3 23.1 59.2 90.2 75.6 93.9 25.9 49.8 23.4 BYOL [15] 61.7 93.4 83.5 96.8 25.7 49.4 23.1 58.5 83.2 25.9 49.7 22.9 38.1 96.7 Detection-oriented DetCo [47] 61.0 93.4 83.7 26.2 23.3 96.9 50.3 23.5 20.040.0 73.7 93.7 26.150.3 DenseCL [44] Segmentation-oriented 60.7 93.3 50.3 23.7 83.9 96.9 26.3 54.5 91.1 26.5 50.7 23.8 74.1 93.1 Vision-language CLIP [32] 61.0 93.2 83.4 96.8 26.3 50.5 23.5

Table 2: Comparisons of different paradigms under the Disjoint-normal setting with ResNet-50 backbone. Orange color indicates the results of our proposed *pretrain-adapt-finetune* paradigm, while others are results of conventional *pretrain-finetune* paradigm.

where \mathcal{L}_{det} , \mathcal{L}_{sem} , \mathcal{L}_{driv} are losses for object detection, semantic segmentation, and drivable area segmentation, respectively. ¹ We include more details in Section 5.1.

Single task v.s. mutil-task training

Table 3: Results of single-task baselines and multi-task models with ResNet-50 backbone. SS and DA means semantic segmentation and drivable area segmentation. - indicates inapplicable.

Setting	Method	mIoU (SS)	mIoU (DA)	mAP	AP50	AP75
	MaskFormer [5]	57.1	-	-	-	-
	MaskFormer [5]	-	83.9	-	-	-
Full	Sparse R-CNN [38]	-	-	29.4	55.8	26.4
	Self-training [13]	61.8	84.4	30.1	56.6	27.6
	LV-Adapter (Ours)	63.1	84.9	31.1	58.2	28.4
	MaskFormer [5]	57.1	-	-	-	-
	MaskFormer [5]	-	78.1	-	-	-
Disjoint-balance	Sparse R-CNN [38]	-	-	18.6	37.8	15.6
	Self-training [13]	59.4	80.3	22.4	44.1	19.6
	LV-Adapter (Ours)	61.8	80.6	24.6	47.4	21.9
	MaskFormer [5]	57.1	-	-	-	-
Disjoint-normal	MaskFormer [5]	-	82.0	-	-	-
	Sparse R-CNN [38]	-	-	20.9	41.9	17.8
	Self-training [13]	60.3	83.1	24.9	48.1	22.2
	LV-Adapter (Ours)	62.2	83.7	26.4	50.5	23.7

Ablation

Table 4: Ablation study of the components of our proposed LV-Adapter.

#	Prompt	V2L	L2V	mIoU (SS)	mIoU (DA)
1	×	×	×	54.5	74.1
2	×	X	X	61.5	83.5
3	\checkmark	×	X	61.8	83.5
4	\checkmark	\checkmark	×	61.3	83.6
5	✓	×	\checkmark	62.2	83.7

Training efficiency

Table 5: Comparison of different configurations of *adapt* and *finetune* epochs.

Adapt	Finetune	mIoU (SS)	mIoU (DA)	mAP
12	24	59.5	82.9	25.8
6	30	61.0	83.4	26.3
1	35	61.5	83.5	26.4
6	35	61.3	83.5	26.5
12	35	61.9	83.5	26.6

Prompts

Table 6: Comparison with handcrafted prompts under the disjoint-normal setting.

Method	mAP	AP50	AP75	mIoU (SS)	mIoU (DA)
Prompt engineering	26.1	50.1	23.4	61.4	83.3
Prompt ensembling	26.3	50.4	23.5	61.7	83.3
Learned prompts	26.4	50.5	23.7	62.2	83.7

All convolutional based exp.

Table 8: Comparisons of different training schemes for self-supervised models with convolutional heads.

Method	Scheme	mIou (SS)	mIoU (DA)	mAP
SimCLR	pretrain-finetune	58.3	83.2	24.0
	pretrain-adapt-finetune	58.3	83.3	24.6
DetCo	pretrain-finetune	59.6	83.3	24.1
	pretrain-adapt-finetune	59.7	83.4	24.8

Single-task setting

Table 10: Comparisons on single-task setting.

Model	mIoU (SS)	mIoU (DA)	mAP
MaskFormer + LV-Adaper	57 .1 61.3 ^{+4.2%}	-	-
MaskFormer	-	78.1	-
+ LV-Adaper	-	81.6 ^{+3.5%}	-
Sparse R-CNN	-	-	18.6
+ LV-Adaper	-	-	22.4 ^{+3.8%}

Experiment on Nulmages

Table 11: Comparisons of single-task and multi-task models on NuImages dataset.

Method	mAP	AP50	AP75	mIoU
Sparse R-CNN MaskFormer	46.6	72.8	49.4 -	- 55.8
Multi-task LV-Adapter	47.1 50.3	73.5 76.8	49.9 54.3	53.3 56.0

Summary

- Pretrain-adapt-finetune paradigm
 - Reduce the gap between pre-training and fine-tuning without increasing training cost
- LV-Adapter
 - Incorporate linguistic knowledge into visual features which benefit the downstream tasks
- A more diversified task set with more annotations will further benefit the learning of multi-headed architecture