ICLR 2022

LANGUAGE-DRIVEN SEMANTIC SEGMENTATION

Boyi Li Cornell University, Cornell Tech Kilian Q. Weinberger Cornell University **Serge Belongie** University of Copenhagen

Vladlen Koltun Apple René Ranftl Intel Labs

Mengxue

Motivation

 Text embeddings provide a flexible label representation in which semantically similar labels map to similar regions in the embedding space(e.g., "cat" and "furry").

Contribution

Review--CLIP

(1) Contrastive pre-training

(2) Create dataset classifier from label text

Review—DenseCLIP

CLIP Pre-training + Language-Guided Fine-tuning

Approach — Image Encoder

Image Encoder = ViT image encoder + DPT decoder

Approach—Spatial Regularization Blocks

- Ensure all operations stay equivariant with respect to the labels
- There should be no interactions between the input channels, whose order is defined by the order of the words and can thus be arbitrary

Approach—Spatial Regularization Blocks

Training details

Image encoder: ViT/ResNet101 pretrained in ImageNet

initialize the decoder of DPT randomly

Text encoder: CLIP pretrained

• Freeze text encoder and only update the weights of the image encoder

 Provide the full label set that is defined by each training set to the text encoder for each image.

- PASCAL-5 label set index Semantic Classes aeroplane, bicycle, bird, boat, bottle
 - bus, car, cat, chair, cow diningtable, dog, horse, motorbike, person potted plant, sheep, sofa, train, tv/monitor

1,2,3

0,2,3

0,1,3 0,1,2

sub-dataset

train label set val label set

-		10	CO	4	•	
	νa	la	SE	L	•	

- PASCAL-5i
- COCO-20i
- FSSS-1000: train, val, test \rightarrow 520, 240, 240 classes
- Evaluation Metric
- mIoU: the average IoU over all classes
- FB-IoU: mean value of foreground and background IoUs in fold i and ignores the object classes

. /	

0

3

COCO-200		C	COCO-201		COCO-20 ²		OCO-20 ³	
1	Person	2	Bicycle	3	Car	4	Motorcycle	
5	Airplane	6	Bus	7	Train	8	Truck	
9	Boat	10	T.light	11	Fire H.	12	Stop	
13	Park meter	14	Bench	15	Bird	16	Cat	
17	Dog	18	Horse	19	Sheep	20	Cow	
21	Elephant	22	Bear	23	Zebra	24	Giraffe	
25	Backpack	26	Umbrella	27	Handbag	28	Tie	
29	Suitcase	30	Frisbee	31	Skis	32	Snowboard	
33	Sports ball	34	Kite	35	B. bat	36	B. glove	
37	Skateboard	38	Surfboard	39	T. racket	40	Bottle	
41	W. glass	42	Cup	43	Fork	44	Knife	
45	Spoon	46	Bowl	47	Banana	48	Apple	
49	Sandwich	50	Orange	51	Broccoli	52	Carrot	
53	Hot dog	54	Pizza	55	Donut	56	Cake	
57	Chair	58	Couch	59	P. plant	60	Bed	
61	D. table	62	Toilet	63	TV	64	Laptop	
65	Mouse	66	Remote	67	Keyboard	68	Cellphone	
69	Microwave	70	Oven	71	Toaster	72	Sink	
73	Fridge	74	Book	75	Clock	76	Vase	
77	Scissors	78	Teddy	79	Hairdrier	80	Toothbrush	

COCO-20i

Model	Backbone	Method	$ 5^0$	5^1	5^2	5^3	mean	FB-IoU
OSLSM		1-shot	33.6	55.2	40.9	33.5	40.8	61.3
co-FCN	VGG16	1-shot	36.7	50.6	44.9	32.4	41.1	60.1
AMP-2		1-shot	41.9	50.2	46.7	34.7	43.4	61.9
PANet	PacNat50	1-shot	44.0	57.5	50.8	44.0	49.1	-
PGNet	Keshel30	1-shot	56.0	66.9	50.6	50.4	56.0	69.9
FWB		1-shot	51.3	64.5	56.7	52.2	56.2	-
PPNet		1-shot	52.7	62.8	57.4	47.7	55.2	70.9
DAN	ResNet101	1-shot	54.7	68.6	57.8	51.6	58.2	71.9
PFENet		1-shot	60.5	69.4	54.4	55.9	60.1	72.9
RePRI		1-shot	59.6	68.6	62.2	47.2	59.4	-
HSNet		1-shot	67.3	72.3	62.0	63.1	66.2	77.6
SPNet	PerNet101	zero-shot	23.8	17.0	14.1	18.3	18.3	44.3
ZS3Net	Residenti	zero-shot	40.8	39.4	39.3	33.6	38.3	57.7
LSeg LSeg	ResNet101 ViT-L/16	zero-shot zero-shot	52.8 61.3	53.8 63.6	44.4 43.1	38.5 41.0	47.4 52.3	64.1 67.0

Table 1: Comparison of mIoU and FB-IoU (higher is better) on PASCAL- 5^{i} .

Model	Backbone	Method	$ 20^0$	20^{1}	20^{2}	20^{3}	mean	FB-IoU
PPNet	ResNet50	1-shot	28.1	30.8	29.5	27.7	29.0	-
PMM		1-shot	29.3	34.8	27.1	27.3	29.6	-
RPMM		1-shot	29.5	36.8	28.9	27.0	30.6	-
RePRI		1-shot	32.0	38.7	32.7	33.1	34.1	-
FWB		1-shot	17.0	18.0	21.0	28.9	21.2	-
DAN	ResNet101	1-shot	-	-	-	-	24.4	62.3
PFENet		1-shot	36.8	41.8	38.7	36.7	38.5	63.0
HSNet		1-shot	37.2	44.1	42.4	41.3	41.2	69.1
ZS3Net	ResNet101	zero-shot	18.8	20.1	24.8	20.5	21.1	55.1
LSeg	ResNet101	zero-shot	22.1	25.1	24.9	21.5	23.4	57.9
LSeg	ViT-L/16	zero-shot	28.1	27.5	30.0	23.2	27.2	59.9

Table 2: Comparison of mIoU and FB-IoU (higher is better) on $COCO-20^i$.

Table 3 compares our approach to state-of-theart few-shot models. Notably, under the same ResNet101, LSeg could achieve comparative results of the state-of-the-art one-shot method. Also, LSeg even outperforms a state-of-the-art one-shot method: 87.8 mIoU (ours) vs. 86.5 mIoU (HSNet) with a larger backbone ViT-L/16, indicating that LSeg generalizes very well to unseen categories. Figure 4 shows examples of segmentation results on unseen categories.

Model	Backbone	Method	mIoU
OSLSM	VGG16	1-shot	70.3
GNet		1-shot	71.9
FSS		1-shot	73.5
DoG-LSTM		1-shot	80.8
DAN	ResNet101	1-shot	85.2
HSNet		1-shot	86.5
LSeg	ResNet101	zero-shot	84.7
LSeg	ViT-L/16	zero-shot	87.8

Table 3: Comparison of mIoU on FSS-1000.

Visualization

Figure 4: LSeg zero-shot semantic segmentation results on unseen categories of FSS-1000 dataset.

Method	Backbone	Text Encoder	pixAcc [%]	mIoU [%]
OCNet	ResNet101	-	-	45.45
ACNet	ResNet101	-	81.96	45.90
DeeplabV3	ResNeSt101	-	82.07	46.91
DPT	ViT-L/16	-	82.70	47.63
LSeg	ViT-L/16	ViT-B/32	82.46	46.28
LSeg	ViT-L/16	$RN50 \times 16$	82.78	47.25

Table 6: Comparison of semantic segmentation results on the ADE20K validation set. For LSeg, we conduct experiments with fixed text encoders of ViT-B/32 and RN50 \times 16 CLIP pretrained models.

Visualization

Figure 5: LSeg examples with related but previously unseen labels, and hierarchical labels. Going from left to right, labels that are removed between runs are <u>underlined</u>, whereas labels that are added are marked in **bold red**.

Thanks