Imagic: Text-Based Real Image Editing with Diffusion Models
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“A bird spreading “A person giving “A goat jumping
wings” the thumbs up” over a cat”

Asl : :
“Two kissing “A children’s drawing
parrots” of a waterfall”
Figure 1. Imagic — Editing a single real image. Our method can perform various text-based semantic edits on a single real input image,

including highly complex non-rigid changes such as posture changes and editing multiple objects. Here, we show pairs of 1024 x1024
input (real) images, and edited outputs with their respective target texts.
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Backgrounds

* Diffusion Models

* Noise prediction
* U-Net
L 2
o Lpm = Eg cin(0,1),8 [Hf - EO(Itst)Hz]

* Modeling conditional distribution
* U-Net: Res-block + Attention module
* Condition encoder(Text encoder)



Backgrounds

* Diffusion Models

* Image-level diffusion
* Imagen

* Latent space diffusion
* Stable Diffusion
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INntroduction

* Settings
* [nput a source Image and a prompt which describe the wanted changes
on source Image

* Qutput target images

“A zebra” “A horse with “A horse with its “A brown horse in
a saddle” head down” a grass fleld” horse”

“A pistachio cake” “A chocolate cake” “A strawberrv cake” “A wedding cake” “A slice of cake”



INntroduction

* Fast, cheap(relatively) single image-text pair finetuning
methodology for Generative Image Editing
* Two versions: Imagen \ Stable Diffusion (v1)

* Time and resources for finetuning a single iImage
* Imagen: 8 minutes on two TPU V4
 Stable Diffusion: 7 minutes on one A100

* Balance text alignment with fidelity
* Maintaining foreground and background contexts
* Achieve purpose modification



Methodology

Three procedures for image editing
* Maintain fidelity
* (A) Text Embedding Optimization
* (B) Model Fine-Tuning
* Balance text alignment with fidelity
* (C) Interpolation and Generation

(A) Text Embedding Optimization
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(B) Model Fine-Tuning

Reconstruction Loss
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Methodology

* Text Embedding Optimization

* Introduced T5[1] text encoder to get

target text embedding e, € R"*4
e Diffusion model iIs frozen

* Using reconstruction objective to
optimize text embedding

L(x,e,0) = E; [”6 — fo(xt, 1, e)Hé]

* Produces optimized embedding eop:

(A) Text Embedding Optimization

Reconstruction Loss
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Methodology

* Model Fine-Tuning

* Further help the model generate high fidelity editing results

* Using e as text embedding to finetune Diffusion Model with the
objective of:

£(x,e,6) = Ev.c [le — folxs,t,e)]3]

(B) Model Fine-Tuning

Reconstruction Loss
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Methodology

* Interpolation and Generation

* Simple linear interpolation between a and b can achieve a result that takes
INto account fidelity and text alignment

é:n'etgt‘i‘(l_n)'eopt

* Generation process follow normal txt2img pipeline, using fine-tuned diffusion
model.

(C) Interpolation & Generation
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Methodology

* Implementation Detalls
* Imagen
* Optimize text embedding on 64x64 for 100 steps (Adam le-3)
* Finetuning diffusion model on 64x64 for 1500 steps
* Finetuning on 64x64 = 256x256 SR diffusion for 1500 steps

* Finetuning on 64x64 = 256x256 adds little effect, thus directly use pretrained
model

* Stable Diffusion

* Optimize text embedding on latent space diffusion for 1000 steps (Adam 2e-3)
* Finetuning for 1500 steps (Adam 5e-7) | — —
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“A photo of a sitting dog”

“A kitten lying down”

“A hird wmxg a fish"

Input

SDEdit

AN | L |
“T'wo cookies next &

0 & glass of julve” “A waflle with whipped cream”

e e

“A drawing of & watermelon™

DDIB

= 2

T

“A photo of a tree in snow”

“A photo of a vase of uo)nrml.t.:mps"

“A photo of & beach at night”

.

Text2LIVE

8 _ S “A photo of a blue car” “A pﬂom of & red chair” “A photo of & yellow shirt” “A painted Easter egg”
e = . _-hoaimiad Basesage”
"ga‘ — } : \ T et T e T e
= A 13 ' e Rt e
“A photoc ofatree “A photoofa “A goatjumping *“A horse raising . ! s 8&* T e e
with autumn leaves” sitting dog” over & cat” its head” e N e R 4 : R N P
“Two champagne glasses “A photo of a guitar™ “A horge jumping out of the water” ‘:A soocar ball iﬁ‘f}m sand”



Experiments

* User study
* TEdBench

* a novel collection of 100 pairs of input images and target texts describing a desired
complex non-rigid edit.
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Figure 8. User study results. Preference rates (with 95%
confidence intervals) for image editing quality of Imagic over
SDEdit [35], DDIB [59], and Text2LIVE [7].



Ablation Study

* Text Embedding Optimization

Input Image: . . Target Text: “A photo of a dog lying down”
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Ablation Study

* Model Fine-Tuning

"' , Target Text: “A photo of a pistachio cake”
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Figure 7. Embedding interpolation. Varying n) with the same seed, using the pre-trained (top) and fine-tuned (bottom) models.



Ablation Study

* Interpolation and Generation

Increasing n

Input Image

Target Text: “A blue car”

- ':l'arget Text: “A bar stool”



Ablation Study

* Interpolation and Generation

* When using different random seeds and different samples, users need to
make small adjustments to the value of n to get the best results

* Select the value range of n by two evaluation indicators

L0 "' Figure 9. Editability—fidelity
tradeoff. CLIP score (target
text alignment) and 1—LPIPS
(input image fidelity) as func-
tions of m, averaged over 150
inputs. Edited images tend to
match both the input image and
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Limitations

e Subtle cases
o Affects extrinsic image details
Edited Image

|niut Image

“A photo of a

Input Image Edited Image

Target Text:
=
-

Target Text: “Pizza with
arace car” pepperoni”

Figure 10. Failure cases. Insufficient consistency with the target
text (top), or changes in camera viewing angle (bottom).



