Imagic: Text-Based Real Image Editing with Diffusion Models

Figure 1. Imagic – Editing a single real image. Our method can perform various text-based semantic edits on a single real input image, including highly complex non-rigid changes such as posture changes and editing multiple objects. Here, we show pairs of 1024×1024 input (real) images, and edited outputs with their respective target texts.

Backgrounds

- Diffusion Models
 - Diffusion model for image generation
 - Text-to-Image
 - Image-to-Image
 - Diffusion Process
 - Forward process
 - Used for training
 - Parameters free
 - Reverse process

Backgrounds

- Diffusion Models
 - Noise prediction
 - U-Net
 - $L_{DM} = \mathbb{E}_{x,\epsilon \sim \mathcal{N}(0,1),t} \left[\|\epsilon \epsilon_{\theta}(x_t,t)\|_2^2 \right]$
 - Modeling conditional distribution
 - U-Net: Res-block + Attention module
 - Condition encoder(Text encoder)

Backgrounds

- Diffusion Models
 - Image-level diffusion
 - Imagen

- Latent space diffusion
 - Stable Diffusion

Introduction

Settings

- Input a source image and a prompt which describe the wanted changes on source image
- Output target images

Introduction

- Fast, cheap(relatively) single image-text pair finetuning methodology for Generative Image Editing
 - Two versions: Imagen \ Stable Diffusion (v1)
 - Time and resources for finetuning a single image
 - Imagen: 8 minutes on two TPU V4
 - Stable Diffusion: 7 minutes on one A100
- Balance text alignment with fidelity
 - Maintaining foreground and background contexts
 - Achieve purpose modification

- Three procedures for image editing
 - Maintain fidelity
 - (A) Text Embedding Optimization
 - (B) Model Fine-Tuning
 - Balance text alignment with fidelity
 - (C) Interpolation and Generation

- Text Embedding Optimization
 - Introduced T5[1] text encoder to get target text embedding $\mathbf{e}_{tgt} \in \mathbb{R}^{T \times d}$
 - Diffusion model is frozen
 - Using reconstruction objective to optimize text embedding

$$\mathcal{L}(\mathbf{x}, \mathbf{e}, \theta) = \mathbb{E}_{t, \epsilon} \left[\| \epsilon - f_{\theta}(\mathbf{x}_{t}, t, \mathbf{e}) \|_{2}^{2} \right]$$

• Produces optimized embedding e_{opt}

- Model Fine-Tuning
 - Further help the model generate high fidelity editing results
 - Using e_{opt} as text embedding to finetune Diffusion Model with the objective of:

$$\mathcal{L}(\mathbf{x}, \mathbf{e}, \theta) = \mathbb{E}_{t, \epsilon} \left[\| \epsilon - f_{\theta}(\mathbf{x}_{t}, t, \mathbf{e}) \|_{2}^{2} \right]$$

- Interpolation and Generation
 - Simple linear interpolation between a and b can achieve a result that takes into account fidelity and text alignment

$$\bar{\mathbf{e}} = \eta \cdot \mathbf{e}_{tgt} + (1 - \eta) \cdot \mathbf{e}_{opt}$$

• Generation process follow normal txt2img pipeline, using fine-tuned diffusion model.

- Implementation Details
 - Imagen
 - Optimize text embedding on 64x64 for 100 steps (Adam 1e-3)
 - Finetuning diffusion model on 64x64 for 1500 steps
 - Finetuning on 64x64 → 256x256 SR diffusion for 1500 steps
 - Finetuning on 64x64 → 256x256 adds little effect, thus directly use pretrained model
 - Stable Diffusion
 - Optimize text embedding on latent space diffusion for 1000 steps (Adam 2e-3)
 - Finetuning for 1500 steps (Adam 5e-7)

Experiments

over a cat"

with autumn leaves" sitting dog"

Input Image

Edited Image

"A soccer ball in the sand"

Experiments

- User study
 - TEdBench
 - a novel collection of 100 pairs of input images and target texts describing a desired complex non-rigid edit.

Figure 8. **User study results.** Preference rates (with 95% confidence intervals) for image editing quality of Imagic over SDEdit [35], DDIB [59], and Text2LIVE [7].

Text Embedding Optimization

Model Fine-Tuning

Figure 7. **Embedding interpolation.** *Varying* η *with the same seed, using the pre-trained (top) and fine-tuned (bottom) models.*

Interpolation and Generation

- Interpolation and Generation
 - When using different random seeds and different samples, users need to make small adjustments to the value of η to get the best results
 - Select the value range of η by two evaluation indicators

Figure 9. **Editability-fidelity tradeoff.** *CLIP score* (target text alignment) and 1–LPIPS (input image fidelity) as functions of η , averaged over 150 inputs. Edited images tend to match both the input image and text in the highlighted area.

• η in [0.6, 0.8]

Limitations

- Subtle cases
- Affects extrinsic image details

Figure 10. Failure cases. Insufficient consistency with the target text (top), or changes in camera viewing angle (bottom).