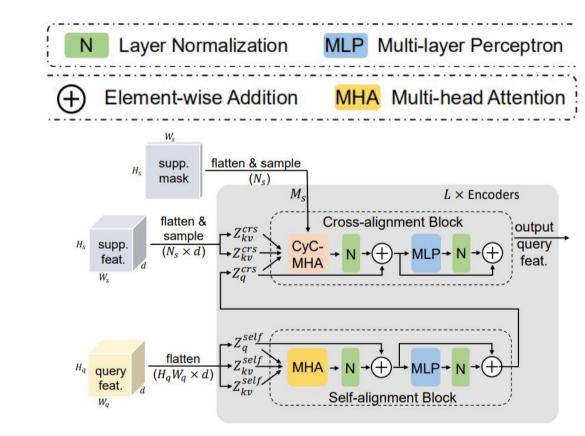
Few-Shot Segmentation via Cycle-Consistent Transformer

 Gengwei Zhang^{1,2*}, Guoliang Kang³, Yi Yang⁴, Yunchao Wei^{5,6†}
¹ Baidu Research
² ReLER, Centre for Artificial Intelligence, University of Technology Sydney ³ University of Texas, Austin
⁴ CCAI, College of Computer Science and Technology, Zhejiang University ⁵ Institute of Information Science, Beijing Jiaotong University
⁶ Beijing Key Laboratory of Advanced Information Science and Network {zgwdavid, kgl.prml, wychao1987, yee.i.yang}@gmail.com



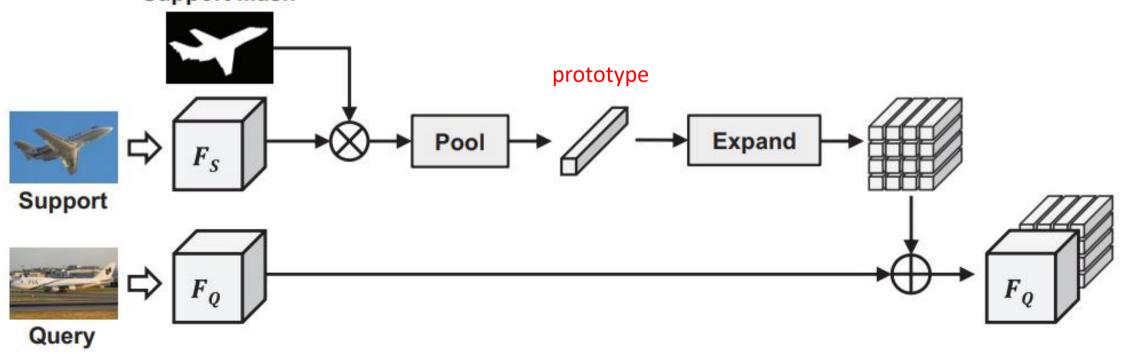
• Neural Information Processing Systems (NIPS 2021)

01 Background for Few-Shot Segmentation

Motivation

- Deep learning based computer vision systems have largely depended on large-scale training sets
- Deep networks mostly work with predefined classes and are incapable of generalizing to new ones

Few shot: learn how to recognize novel objects after seeing only a handful of exemplars



Support Mask

Feature from Res2 + Res3

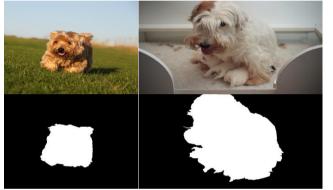
01 Background for Few-Shot Segmentation

• Implementation

- Divide the dataset into $\hat{\mathbf{G}}$ $\hat{\mathbf{G}}$
- One-shot segmentation and k-shot segmentation

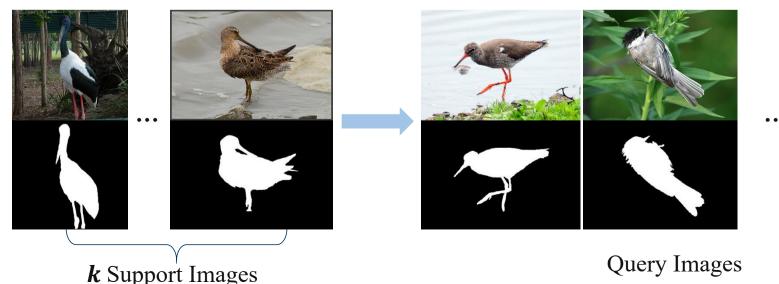
One-shot Segmentation:

Support Image



Query Images

k-shot Segmentation:



Query Images

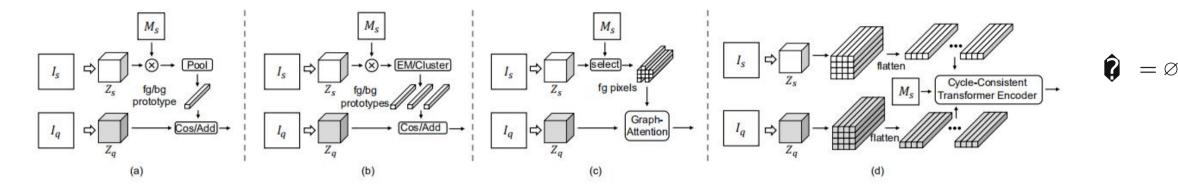
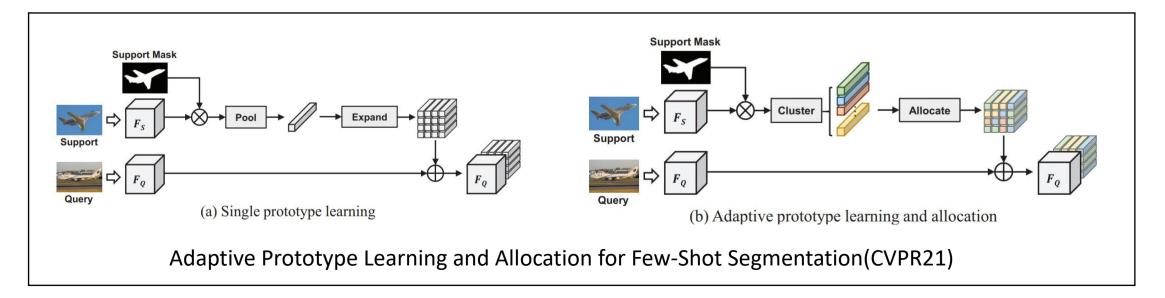


Figure 1: Different learning frameworks for few-shot segmentation, from the perspective of ways to utilize support information. (a) Class-wise mean pooling based method. (b) Clustering based method. (c) Foreground pixel attention method. (d) Our Cycle-Consistent TRansformer (CyCTR) framework that enables all beneficial support pixel-level features (foreground and background) to be considered.



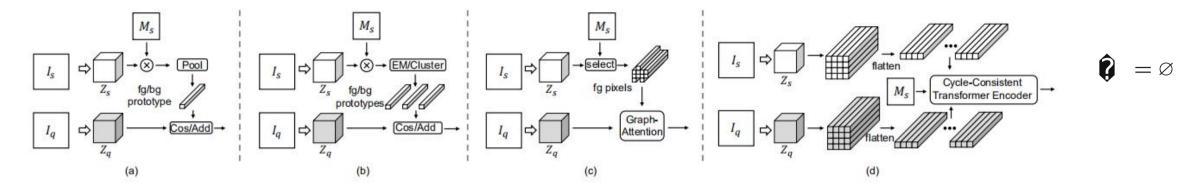
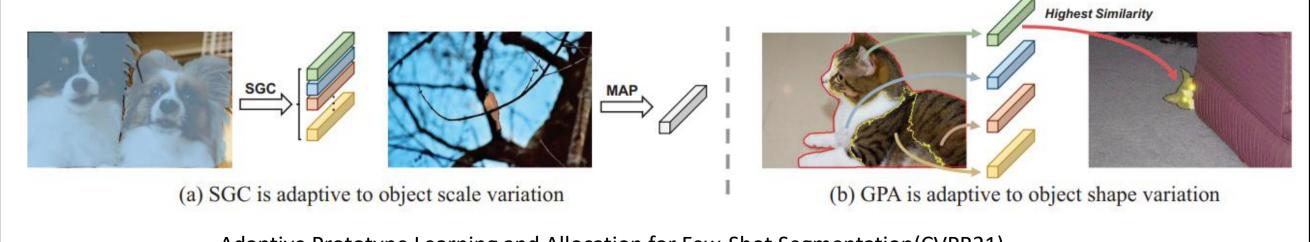


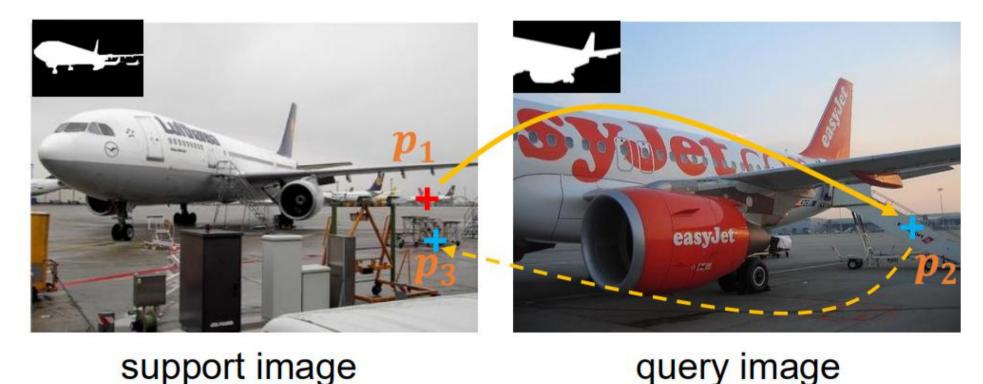
Figure 1: Different learning frameworks for few-shot segmentation, from the perspective of ways to utilize support information. (a) Class-wise mean pooling based method. (b) Clustering based method. (c) Foreground pixel attention method. (d) Our Cycle-Consistent TRansformer (CyCTR) framework that enables all beneficial support pixel-level features (foreground and background) to be considered.



Adaptive Prototype Learning and Allocation for Few-Shot Segmentation(CVPR21)

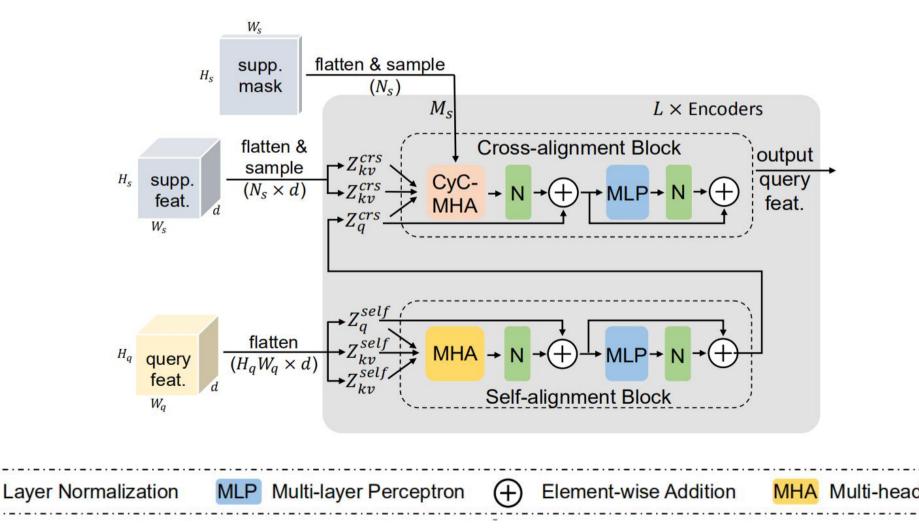
• Motivation

• Many pixel-level **support features are quite different from the query ones**, and thus may confuse the attention.



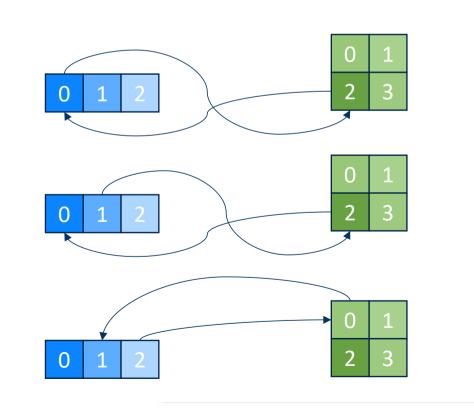
Foreground points + Background points

- Framework of the proposed Cycle-Consistent TRansformer (CyCTR)
 - Self-alignment block for utilizing global context within the query feature map
 - Cross-alignment block for aggregate information from support images

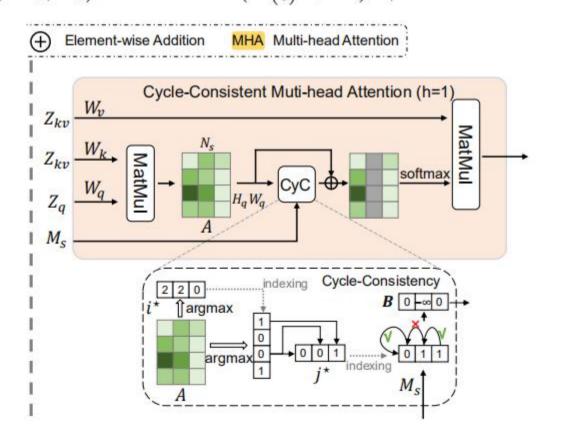


• Cycle-Consistent Attention (Cross-alignment block)

$$i^{\star} = \operatorname*{argmax}_{i} A_{(i,j)}, \quad B_{j} = \begin{cases} 0, & \operatorname{if} M_{s(j)} = M_{s(j^{\star})} \\ -\infty, & \operatorname{if} M_{s(j)} \neq M_{s(j^{\star})} \end{cases}$$
$$\operatorname{CvCAtten}_{i} Q_{i}, K_{i}, V_{i}) = \operatorname{softmax}_{i} (A_{(i)} + B) V_{i}.$$



 $A = \frac{QK^T}{\sqrt{d}}, A \in \mathbb{R}^{H_q W_q \times N_s}$



• Mask-guided sparse sampling and K-shot Setting

$$\begin{split} N_{fg} &\leq \frac{N_s}{2} \ , N_s \leq k H_s W_s \\ N_{bg} &= N_s \ - N_{fg} \end{split}$$

With a proper *Ns*, the sampling operation reduces the computational complexity, and makes our algorithm more scalable with the increase of spatial size of support images.

• Self-alignment block

• Refering to deformable detr

$$\operatorname{PredAtten}(Q_r, V_r) = \sum_{g}^{P} \operatorname{softmax}(A')_{(r,g)} V_{r+\Delta_{(r,g)}}, \qquad \operatorname{Atten}(Q, Q_r) V_{r+\Delta_{(r,g)}}, \qquad \operatorname{Compare}(Q, Q_r) = \sum_{g}^{P} \operatorname{softmax}(A')_{(r,g)} V_{r+\Delta_{(r,g)}}, \qquad \operatorname{Compare}(Q, Q_r) = \sum_{g}^{P} \operatorname{softmax}(Q, Q_$$

Atten
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d}})V$$
,
Compare with original attention

$$\Delta = f(Q + \text{Coord}) \text{ and } A' = g(Q + \text{Coord}), \quad A' \in \mathbb{R}^{H_q W_q \times P}$$

 $f(\cdot)$ and $g(\cdot)$ are two fully connected layers that predict the offsets³ and attention weights.

01 Few-Shot Segmentation Setting

• Dataset

- Pascal-5^{*i*}: 20 categories, 15 classes are used for training and 5 classes for test.
- COCO- 20^{*i*}: 80 categories, 60 classes are used for training and 20 classes for test.

• Evaluation Metric

- mIoU
- FB-IoU

• Results

Table 1: Comparison with other state-of-the-art methods for 1-shot and 5-shot segmentation on PASCAL-5^{*i*} using the mIoU (%) evaluation metric. Best results are shown in bold.

Method	Backbone	1-shot				5-shot					
		5 ⁰	5^{1}	5^2	5^{3}	Mean	5^{0}	5^{1}	5^2	5^{3}	Mean
PANet [35]	Vgg-16	42.3	58.0	51.1	41.2	48.1	51.8	64.6	59.8	46.5	55.7
FWB [23]		47.0	59.6	52.6	48.3	51.9	50.9	62.9	56.5	50.1	55.1
SG-One [45]		40.2	58.4	48.4	38.4	46.3	41.9	58.6	48.6	39.4	47.1
RPMM [41]		47.1	65.8	50.6	48.5	53.0	50.0	66.5	51.9	47.6	54.0
CANet [44]		52.5	65.9	51.3	51.9	55.4	55.5	67.8	51.9	53.2	57.1
PGNet [43]		56.0	66.9	50.6	50.4	56.0	57.7	68.7	52.9	54.6	58.5
RPMM [41]	Res-50	55.2	66.9	52.6	50.7	56.3	56.3	67.3	54.5	51.0	57.3
PPNet [18]		47.8	58.8	53.8	45.6	51.5	58.4	67.8	64.9	56.7	62.0
PFENet [30]		61.7	69.5	55.4	56.3	60.8	63.1	70.7	55.8	57.9	61.9
CyCTR (Ours)	Res-50	67.8	72.8	58.0	58.0	64.2	71.1	73.2	60.5	57.5	65.6
FWB [23]		51.3	64.5	56.7	52.2	56.2	54.9	67.4	62.2	55.3	59.9
DAN [34]	Res-101	54.7	68.6	57.8	51.6	58.2	57.9	69.0	60.1	54.9	60.5
PFENet [30]		60.5	69.4	54.4	55.9	60.1	62.8	70.4	54.9	57.6	61.4
CyCTR (Ours)	Res-101	69.3	72.7	56.5	58.6	64.3	73.5	74.0	58.6	60.2	66.6

• Results

Table 2: Comparison with other state-of-the-art methods for 1-shot and 5-shot segmentation on $COCO-20^i$ using the mIoU (%) evaluation metric. Best results are shown in bold.

Method	Backbone	1-shot				5-shot					
		20^{0}	20^{1}	20^{2}	20^{3}	Mean	20^{0}	20^{1}	20^{2}	20^{3}	Mean
FWB [23]	Res-101	19.9	18.0	21.0	28.9	21.2	19.1	21.5	23.9	30.1	23.7
PPNet [18]	Res-50	28.1	30.8	29.5	27.7	29.0	39.0	40.8	37.1	37.3	38.5
RPMM [41]	Res-50	29.5	36.8	29.0	27.0	30.6	33.8	42.0	33.0	33.3	35.5
PFENet [30]	Res-101	34.3	33.0	32.3	30.1	32.4	38.5	38.6	38.2	34.3	37.4
CyCTR (Ours)	Res-50	38.9	43.0	39.6	39.8	40.3	41.1	48.9	45.2	47.0	45.6

• Results

Table 4: Ablation studies that validate the effectiveness of each component in our Cycle-Consistent TRansformer. The first result is obtained by our baseline (see Section 4.2 for details).

self-alignment	cross-alignment	CyCTR (pred)	CyCTR (fg. only)	CyCTR	mIoU (%)
					58.8
\checkmark					61.6
\checkmark	\checkmark				61.2
\checkmark	\checkmark	\checkmark			61.9
\checkmark	\checkmark		\checkmark		62.0
\checkmark	\checkmark			\checkmark	62.8