Rethinking Semantic Segmentation: A Prototype View

Tianfei Zhou¹, Wenguan Wang^{2,1}*, Ender Konukoglu¹, Luc Van Gool¹ ¹ Computer Vision Lab, ETH Zurich ² ReLER, AAII, University of Technology Sydney

CVPR 2022, Oral

Parametric & Non-Parametric

Introduction

Question:

- 1. What are the relation and difference between FCN based and attention based mask decoding strategies?
- 2. If the <u>learnable query vectors</u> indeed implicitly capture some <u>intrinsic properties</u> of data, is there any better way to achieve this?

Parametric & Non-Parametric

Introduction

Question:

- 1. What are the relation and difference between FCN based and attention based mask decoding strategies?
- 2. If the <u>learnable query vectors</u> indeed implicitly capture some <u>intrinsic properties</u> of data, is there any better way to achieve this?
- 3. What are the limitations of this learnable prototype based parametric paradigm?
- 4. How to address these limitations?

Parametric Prototype Learning

Parametric Prototype Learning

$$p(c|\mathbf{i}) = \frac{\exp(-\langle \mathbf{i}, \mathbf{g}_c \rangle)}{\sum_{c'=1}^{C} \exp(-\langle \mathbf{i}, \mathbf{g}_{c'} \rangle)}, \quad <:,:> \text{ distance measure}$$

Introduction

Limitations:

1. Single learned prototype per class, insufficient to rich intraclass variance.

2. Much parameters needed for prototype learning, hurting generalizability.

3. Ignoring known inductive biases, intra-class compactness about feature distribution.

Architecture illustration

Non-Learnable Prototype based pixel classification

Pixel features, $I \in \mathbb{R}^{H \times W \times D}$, CK non-learnable prototypes $\{p_{c,k} \in \mathbb{R}^D\}_{c,k=1}^{C,K}$. The category prediction of each pixel $i \in I$.

$$\hat{c}_i = c^*, \; ext{with} \; (c^*, k^*) = rgmin_{(c,k)} \{ \langle m{i}, m{p}_{c,k}
angle \}_{c,k=1}^{C,K},$$

Probability of Pixel i over the C class,

$$p(c|\boldsymbol{i}) = rac{\exp(-s_{i,c})}{\sum_{c'=1}^{C} \exp(-s_{i,c'})}, ext{ with } s_{i,c} = \min\{\langle \boldsymbol{i}, \boldsymbol{p}_{c,k}
angle\}_{k=1}^{K},$$

update prototypes,

$$\boldsymbol{p}_{c,k} \leftarrow \mu \boldsymbol{p}_{c,k} + (1-\mu) \overline{\boldsymbol{i}}_{c,k},$$

Within-Class Online Clustering

Given pixels $I^c = \{i_n\}_{n=1}^N$ in a training batch that belong to class c. K prototypes $\{p_{c,k}\}_{k=1}^K$ of class c.

Pixel-Prototype mapping,
$$L^{c} = \left[l_{i_{n}}\right]_{n=1}^{N} \in \{0,1\}^{K \times N}$$
,
$$l_{i_{n}} = \left[l_{i_{n},k}\right]_{k=1}^{K} \in \{0,1\}^{K}$$

Pixel embedding X^c , Prototypes P^c

$$\max_{\boldsymbol{L}^{c}} \operatorname{Tr}(\boldsymbol{L}^{c\top}\boldsymbol{P}^{c\top}\boldsymbol{X}^{c}),$$
s.t. $\boldsymbol{L}^{c} \in \{0,1\}^{K \times N}, \boldsymbol{L}^{c\top}\boldsymbol{1}^{K} = \boldsymbol{1}^{N}, \boldsymbol{L}^{c}\boldsymbol{1}^{N} = \frac{N}{K}\boldsymbol{1}^{K},$

Within-Class Online Clustering

$$\max_{\boldsymbol{L}^{c}} \operatorname{Tr}(\boldsymbol{L}^{c\top}\boldsymbol{P}^{c\top}\boldsymbol{X}^{c}) + \kappa h(\boldsymbol{L}^{c}),$$

s.t. $\boldsymbol{L}^{c} \in \mathbb{R}^{K \times N}_{+}, \ \boldsymbol{L}^{c\top}\boldsymbol{1}^{K} = \boldsymbol{1}^{N}, \ \boldsymbol{L}^{c}\boldsymbol{1}^{N} = \frac{N}{K}\boldsymbol{1}^{K},$

Solution using Sinkhorn-Knopp iteration.

$$oldsymbol{L}^{c} = extsf{diag}(oldsymbol{u}) \expig(rac{oldsymbol{P}^{c op}oldsymbol{X}^{c}}{\kappa}ig) extsf{diag}(oldsymbol{v}),$$

Training Objects

CE loss

$$egin{aligned} \mathcal{L}_{ ext{CE}} &= -\log p(c_i | oldsymbol{i}) \ &= -\log rac{\exp(-s_{i,c_i})}{\exp(-s_{i,c_i}) + \sum_{c'
eq c_i} \exp(-s_{i,c'})}. \end{aligned}$$

Pixel-Prototype Contrastive Learning

$$\mathcal{L}_{ ext{PPC}} = -\log rac{\exp(oldsymbol{i}^{ op} oldsymbol{p}_{c_i,k_i}/ au)}{\exp(oldsymbol{i}^{ op} oldsymbol{p}_{c_i,k_i}/ au) + \sum_{oldsymbol{p}^- \in \mathcal{P}^-} \exp(oldsymbol{i}^{ op} oldsymbol{p}_{-}/ au)},$$

Pixel-Prototype Distance Optimization

$$\mathcal{L}_{\text{PPD}} = (1 - \boldsymbol{i}^{\top} \boldsymbol{p}_{c_i,k_i})^2.$$

$$\mathcal{L}_{\text{SEG}} = \mathcal{L}_{\text{CE}} + \lambda_1 \mathcal{L}_{\text{PPC}} + \lambda_2 \mathcal{L}_{\text{PPD}}.$$

Experiments

Method	Backbone	# Param (M)	mIoU (%)
DeepLabV3+ [ECCV18] [16]	ResNet-101 [46]	62.7	44.1
OCR [ECCV20] [131]	HRNetV2-W48 [110]	70.3	45.6
MaskFormer [NeurIPS21] [20]	ResNet-101 [46]	60.0	46.0
UperNet [ECCV20] [119]	Swin-Base [79]	121.0	48.4
OCR [ECCV20] [131]	HRFormer-B [132]	70.3	48.7
SETR [CVPR21] [141]	ViT-Large [31]	318.3	50.2
Segmenter [ICCV21] [102]	ViT-Large [31]	334.0	51.8
[†] MaskFormer [NeurIPS21] [20]	Swin-Base [79]	102.0	52.7
FCN [CVPR15] [80]	ResNet-101 [46]	68.6	39.9
Ours		68.5	41.1 ↑ 1.2
HRNet [PAMI20] [110]	HDNotV2 W48 [110]	65.9	42.0
Ours	HKINCLV 2- W40 [110]	65.8	43.0 ↑ 1.0
Swin [ICCV21] [79]	Swin Boso [70]	90.6	48.0
Ours	Swiii-Dase [79]	90.5	48.6 ↑ 0.6
SegFormer [NeurIPS21] [120]	MiT B4 [120]	64.1	50.9
Ours	IVII I-D4 [120]	64.0	51.7 † 0.8

[†]: backbone is pre-trained on ImageNet-22K.

Table 1. Quantitative results (§5.2) on ADE20K [142] val.

Mathad	Dealthana	# Param	mIoU
Method	Backbolle	(M)	(%)
PSPNet [CVPR17] [137]	ResNet-101 [46]	65.9	78.4
PSANet [ECCV18] [138]	ResNet-101 [46]	-	78.6
AAF [ECCV18] [60]	ResNet-101 [46]	-	79.1
Segmenter [ICCV21] [102]	ViT-Large [31]	322.0	79.1
ContrastiveSeg [ICCV21] [113]	ResNet-101 [46]	58.0	79.2
MaskFormer [NeurIPS21] [20]	ResNet-101 [46]	60.0	80.3
DeepLabV3+ [ECCV18] [16]	ResNet-101 [46]	62.7	80.9
OCR [ECCV20] [131]	HRNetV2-W48 [110]	70.3	81.1
FCN [CVPR15] [80]	DecNet 101 [46]	68.6	78.1
Ours	Residet-101 [40]	68.5	79.1 † 1.0
HRNet [PAMI20] [110]	LIDNA+1/2 11/19 [110]	65.9	80.4
Ours	HKINELV 2-W40 [110]	65.8	81.1 \(\phi\) 0.7
Swin [ICCV21] [79]	Swin Dece [70]	90.6	79.8
Ours	Swiii-Dase [79]	90.5	80.6 ↑ 0.8
SegFormer [NeurIPS21] [120]	MiT-B4 [120]	64.1	80.7
Ours		64.0	81.3 \phi 0.6
T 1 1 0 0 (1) (1)			

Table 2. Quantitative results (§5.2) on Cityscapes [23] val.

Experiments

Method	Backbone	# Param	mIoU
	Duckoone	(M)	(%)
SVCNet [CVPR19] [29]	ResNet-101 [46]	-	39.6
DANet [CVPR19] [35]	ResNet-101 [46]	69.1	39.7
SpyGR [CVPR20] [68]	ResNet-101 [46]	-	39.9
MaskFormer [NeurIPS21] [20]	ResNet-101 [46]	60.0	39.8
ACNet [ICCV19] [36]	ResNet-101 [46]	-	40.1
OCR [ECCV20] [131]	HRNetV2-W48 [110]	70.3	40.5
FCN [CVPR15] [80]	DecNet 101 [46]	68.6	32.5
Ours		68.5	34.0 \(\phi \] 1.5
HRNet [PAMI21] [110]	HDNotV2 W48 [110]	65.9	38.7
Ours		65.8	39.9 † 1.2
Swin [ICCV21] [79]	Swin Base [70]	90.6	41.5
Ours	Swiii-Dase [79]	90.5	42.4 ↑ 0.9
SegFormer [NeurIPS21] [120]	MIT B4 [120]	64.1	42.5
Ours		64.0	43.3 \(\phi\) 0.8

Table 3. Quantitative results (§5.2) on COCO-Stuff [10] test.

Ablation Study

parametric v.s. nonparametric

Method	# Proto	150 classes		300 classes		500 classes		700 classes		847 classes	
		mIoU (%)	# Param (M)	mIoU (%)	# Param (M)	mIoU (%)	# Param (M)	mIoU (%)	# Param (M)	mIoU (%)	# Param (M)
parametric	1	45.1	27.48 (0.12)	36.5	27.62 (0.23)	25.7	27.80 (0.39)	19.8	27.98 (0.54)	16.5	28.11 (0.65)
nonparametric (Ours)	1	45.5 ↑ 0.4	27.37 (0)	37.2 ↑ 0.7	27.37 (0)	26.8 \(\circ) 1.1	27.37 (0)	21.2 † 1.4	27.37 (0)	18.1 ↑ 1.6	27.37 (0)
parametric	10	45.7	28.56 (1.2)	37.0	29.66 (2.3)	26.6	31.26 (3.9)	20.8	32.86 (5.4)	17.7	33.96 (6.5)
nonparametric (Ours)	10	46.4 ↑ 0.7	27.37 (0)	37.8 ↑ 0.8	27.37 (0)	27.9 † 1.3	27.37 (0)	22.1 ↑ 1.3	27.37 (0)	19.4 ↑ 1.7	27.37 (0)

Table 4. Scalability study (§5.3) of our nonparametric model against the parametric baseline (*i.e.*, SegFormer [120]) on ADE20K [142]. For each model variant, we report its segmentation mIoU, parameter numbers of the entire model as well as the prototypes (in the bracket).

Ablation Study

Design

$\mathcal{L}_{ ext{CE}}$	$\mathcal{L}_{ ext{PPC}}$	$\mathcal{L}_{ ext{PPD}}$	mIoU	# Prototype	mIoU (%)	Coefficient μ	mIoU (%)	Distance Measure	mIoU (%)
(Eq. 7)	(Eq. 11)	(Eq. 12)	(%)	K = 1	45.5	$\mu = 0$	44.9	Standard	45.7
1			45.0	K = 5	46.0	$\mu = 0.9$	45.9	Huberized	45.2
1	1		45.9	K = 10	46.4	$\mu = 0.99$	46.0	Cosine	46.4
1		✓	45.4	K = 20	46.5	$\mu = 0.999$	46.4		•
1	\checkmark	1	46.4	K = 50	46.4	$\mu = 0.9999$	46.3		

(a) Training Objective \mathcal{L} (b) Prototype Number K (c) Momentum Coefficient μ (d) Distance Measure Table 5. A set of **ablative studies** (§5.4) on ADE20K [142] val. All model variants use MiT-B2 [120] as the backbone.

Visualization

Visualization

Visualization

Prototype Meaning

Figure 3. Visualization of pixel-prototype similarity for *person* (top) and *car* (bottom) classes. Please refer to §3 for details.

Embedding Space

Figure 5. **Embedding spaces** learned by (left) parametric model [120], and (right) our nonparametric model. For better visualization, we show five classes of Cityscapes [23] with two prototypes per class.