The Forward-Forward Algorithm: Some Preliminary
Investigations

Geoffrey Hinton
Google Brain
geoffhinton@google.com

What Is wrong with backpropagation

2= ((x,w)—y)"

Forward pass backward pass
z = b?
0z
= — =2b
b=a-y b
0z Y0z ob 0z
a=(X,w) = =
y da 0boa 0b
w X dz 0z da _ 0z

e — WT
oW da 0X Oa

the perceptual system needs to
perform inference and learning
In real time without stopping
to perform backpropagation

It requires perfect knowledge
of the computation performed
In the forward pass in order to
compute the correct
derivatives. (It is possible to
resort to reinforcement
learning)

The Forward-Forward Algorithm

Replace the forward and backward passes of backpropagation by two forward passes.
Positive pass on real data adjusts the weight to increase the goodness in every hidden layer
Negative pass on negative data adjusts the weight to decrease the goodness in every hidden layer

The aim of the learning is to make the goodness be well above 0 for real data and well below 6 for negative
data.

Goodness= Z IH y; 1s the activity of hidden unit j

J

0: Hyperparameter
p(positive) = o z y"f) o: logistic function

i f

Where does the real & negative data from?

784
A

[)

MNIST Dataset

Real label

Negative data

1x28x28

The second way to get negative data: Random label

Negative data is generated by doing a single forward pass

through the net to get probabilities for all the classes and then choosing between the incorrect classes
In proportion to their probabilities. This makes the training much more efficient.

0.3 001 (001 |001 (001 |001 (0.6 0.01 |0.01 |0.03

The Forward-Forward Algorithm

N

[RELU Goodness= Y ¥}
i

I | ayer normalization « Positive pass on real data adjusts
the weight to increase the
goodness in every hidden layer

» Negative pass on negative data
adjusts the weight to decrease the

real data goodness in every hidden layer

000T X 8.

' @0)
negative data | The aim of the learning is to

make the goodness be

well above some threshold value
for real data and well below that
value for negative data.

Hidden layerl Hidden layer?

n How to predict m—

N [ayer normalization

l Goodness= > _Y;
i

1/00lojolojojololo || || | |

0l10l0/0l0j0j0jolol || || | SumGoodnessO
0lo1/0/0l0j0jojolol | | || | | SumGoodness1
0lojol10loj0lololol | ||| | SumGoodness?

SumGoodness3
ojojojojzjojojolojo] | | | || | |

EEEEEEEEEI‘.‘I‘I SumGoodnessb
ojojolojojojzlojojo] | | | | | | SumGoodness6

010101010101012100 | L sumGoodhess
SumGood 8
010101010101010120] | umGoodnes
010101010101010120] | || - e
184

SumGoodness4

000T X 8.

SumGoodness9

Another way to predict(quick but sub-optimal)

Goodness= Y _¥; softmax
J

T —

N

[IRELU
I | ayer normalization

ten entries of 0.1

AN

4 A
SN ESEENAEEEEAD

784

\l
o
> B
< D
B
OC
o

(@)

layerl layer?

The advantage of FF

* |t can be used when the precise details of the forward computation are
unknow.

* It can learn while pipelining sequential data through a neural network
ever without storing the neural activities or stopping to propagate
error derivatives.

What Is wrong with FF

* FF Is somewhat slower than backpropagation
* FF does not generalize quite as well as backpropagation

* What is learned in later layers cannot affect what is learned in earlier
layers.

How to resolve the third disadvantage?

What is learned in later layers cannot affect what is learned in earlier layers.

0000001000

0000001000

0000001000

Activity vector b =
0.3 * Activity vector a
+ 0.7 * LN(Activity vector c)

Experiments with CIFAR-10

learning testing number of | training % test %
procedure procedure hidden layers | errorrate | error rate

BP 2 0 37

FF compute goodness 2 20 41
min ssq for every label

FF one-pass 2 31 45
min ssq softmax

FF compute goodness 2 25 1
max ssq for every label

FF one-pass 2 33 46
max ssq softmax

BP 3 2 39

FF compute goodness 3 24 41
min ssq for every label

FF one-pass 3 32 44
min ssq softmax

FF compute goodness 3 21 44
max ssq for every label

FF one-pass 3 31 46
max ssq softmax

Conclusion: Although the test performance of FF is
worse than backpropagation it is only slightly worse,
even when there are complicated confounding
backgrounds.

Max(min) ssg: maximize(minimize) the sum of the squared activities

Other Interesting points

* An energy efficient way to multiply an activity vector by a weight
matrix Is to implement activities as voltages and weights as
conductances.

* There are many other possible activation function to explore in the
context of FF.

« Mortal Computation makes trillion parameter neural net to consume a
few watts.

Layer(nn.Linear):

(in_features, out_features
bias= device= dtype=):
er(). (in_features, out_features, bias

.relu = torch.nn.ReLU()

.opt = Adam(.parameters() = 3)
.threshold = 2.
.hum_epochs = &
forward(X):
X_direction = x / (x.norm(2, 1 —) + le-4)
.relu(
torch.mm(x_direction weight.T) +
.bias.unsqueeze(0))
train(X_pos, x_neg):
tgdm(range(.num_epochs)):
g_pos = .forward(x_pos).pow(2).mean(1)
g_neg = .forward(x_neg).pow(2).mean(1)

loss = torch.log(l + torch.exp(torch.cat([
-g_pos + .threshold
g_neg - .threshold]))).mean()
.opt.zero_grad()

loss.backward()
.opt.step()

.forward (x_pos) .detach() .forward(x_neg).detach()

Code

(detectron2) root@]
Downloading http:/
Downloadin /
100%
T/raw

hlab2:/opt/data/private/lyh/FFA# python main. py
'yann. lecun. com/exdb/mnist/train-images—idx3—ubyte. gz
'yann. lecun. con ‘mnist/train—image

data/M
9912422 /¢

Downloading http://yann. lecun. com/exdb/mnist/train-labels—idxl-ubyte. gz _ _
Downloading http://vann. lecun. com/exdb/mnist/train—labels—idxl—ubyte. gz to ./data/M
100% 28¢

L/raw

Downloading http://yann. lecun. com/
Downloadin Y |
100%

‘raw

xdb/mnist/t10k-images—idx3—ubyte. gz
:db/mnist/t10k—ima i 7

'data/MN]
1648877

Downloading http://yann. lecun. com/
Downloadin 2/]

100%
Extracting

xdb/mnist/t10k-1abels—idxl-ubyte. gz
:db/

t10k-1abels—idxl-ubyte. gz to ./

. /data/MNIST ‘data/MNIST/raw

‘raw/t10k—1labels—idxl-ubyte. gz to

training layer 0 ..
100%
training layer 1 ...
100%
train error: 0.06754004955291748
test error: 0.06850004196166992

	幻灯片 1
	幻灯片 2: What is wrong with backpropagation
	幻灯片 3: The Forward-Forward Algorithm
	幻灯片 4: Where does the real & negative data from?
	幻灯片 5: The Forward-Forward Algorithm
	幻灯片 6: How to predict
	幻灯片 7: Another way to predict(quick but sub-optimal)
	幻灯片 8: The advantage of FF
	幻灯片 9: What is wrong with FF
	幻灯片 10: How to resolve the third disadvantage?
	幻灯片 11: Experiments with CIFAR-10
	幻灯片 12: Other interesting points
	幻灯片 13: Code

