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Weakly Supervised Localization

Localization Map Bounding Box

o Given an image-level label, WSL is to find the location of the target object.
o In practice, classification networks are trained to extract localization maps. Bounding boxes are 

inferred offline.
o The fundamental target of WSL is to improve the localization maps.
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Methods for extracting localization maps
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Motivation
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• Some regions belonging to the object are not 
highlighted

• In general, vectors in orange/purple are responsible 
to the scores in orange/purple.

• Images are processed independently

Observations and Facts

• Push the vectors belonging to the same object close
• Push the object vectors across images in a same 

category close  (Inter-image communication)

Intuition of  I2C

Zhang, X., Wei, Y., Kang, G., Yang, Y., Huang, T.: Self-produced guidance for weakly-
supervised object localization. In: ECCV. Springer (2018)
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Our

• Push feature vectors of the objects 
from two images close

• Operate within a minibatch

Stochastic Consistency (SC)

• Push feature vectors approach their 
class centers

• One center vector for each category
• Operate across minibatches

Global Consistency (GC)
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Select object vectors
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Visualization Comparison

Predicted boxes are in green, while Ground-truth boxes are in red.



Comparison of Localization Error on ILSVRC



Comparison of Localization Error on CUB



Are SC and GC really effective?



How do the hyper-variables affect the localization 
performance?
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Δ(𝑒𝑟𝑟) =0.27
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