E2E-VLP

ACL 2021

End-to-End Vision-Language Pre-training Enhanced by Visual Learning

Haiyang Xu, Ming Yan, Chenliang Li, Bin Bi, Songfang Huang, Wenming Xiao, Fei Huang

Alibaba Group

Mengxue

Embedding&Pre-Training Task in BERT

预训练→训练→测试

→ 上游任务: Mask Language Modelling & Next Sentence Prediction
→ 下游任务: 句子对分类任务、单句子分类任务、问答任务、单句标注任务

VLP-Visual&language pretraining

- MLM: Masked Language Modeling
- MOC: Masked Object Classification
- MSG: Masked Sentence Generation
- ITM : Image Text Matching

VL-BERT: PRE-TRAINING OF GENERIC VISUALLINGUISTIC REPRESENTATIONS: Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai (ICLR 2020)

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision: Wonjae Kim, Bokyung Son, Ildoo Kim (ICML 2021)

Overall framwork

Image Representations

To improve the generalization of the image representation, we learn from pixels to represent an image instead of using bounding boxes. The pixel features are learned by a CNN visual backbone such as ResNet.

 $f_{img} \in R^{C \times H \times W}$ $z_{img} \in R^{d \times H \times W}$ $Z_{img} = \{o_1, ..., o_{HW}\}$ $C = 2048 \text{ and } H = \frac{H_0}{32}, W = \frac{w_0}{32}$ A HW length of d-dimensional vector

Cross-modal Encoder Pre-training

- Input as: $\{e_{CLS}, e_1, ..., e_m, e_{SEP}, o_1, ..., o_{HW}\}$
- Pretraining tasks:
 - Masked Language Modeling (MLM)

We randomly mask 15% tokens in the text and the model is asked to predict these masked words with the output text and visual representations.

Image-Text Matching (ITM)

We randomly sample 50% mismatched image-text pairs and 50% matched pairs, and train an classifier to predict whether an image and a sentence match each other on the representation of token [CLS] in the last encoder layer h_{CLS}^L

Visual-enhanced Decoder

Motivation

Due to that the CNN feature map has no object level semantics, it is difficult to directly align the cross-modal semantics between CNN feature map and the language embeddings.

- Transformer decoder
 - object detection

understanding the fine-grained object information within image

image-caption generation

guide the learning of visual features regarding the textual semantics

Enhanced by Object Detection--DETR

In encoder side

combine both the visual representation and language embedding as input and reuse the Transformer encoder for cross-modal fusion.

- In decoder side
 - Input: learned positional embeddings
 - Detects the N objects in parallel at each decoder layer
 - Box coordinate regression
 - Class category prediction
 - Object attribute prediction task for VG Dataset

 $\mathcal{L}_{v}(y,\hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(a_{i}) - \log \hat{p}_{\hat{\sigma}(i)}(c_{i}) + \mathcal{L}_{box}(b_{i}, \hat{b}_{\hat{\sigma}(i)}(i))\right]$

Enhanced by Image Captioning

$$\mathcal{L}_{dec} = -\sum_{(x,y)\in(\mathcal{X},\mathcal{Y})} \log \prod_{t=1}^{n} P(y_t|y_{< t}, x) \quad (2)$$

where \mathcal{X} represents the sequence of vision context, \mathcal{Y} represents the set of text to be generated and n is the length of tokens in output text y.

Joint Training

We pre-train E2E-VLP with all the encoder and decoder pre-training tasks :

- Masked Language Modeling
- Image-Text Matching
- Object Detection
- Image-to-Text Generation

jointly by minimizing the four loss functions as:

$$\mathcal{L} = \mathcal{L}_{mlm} + \mathcal{L}_{itm} + \mathcal{L}_v + \mathcal{L}_{dec}$$

Experiments-Pre-training

- Dataset
 - We pre-train our E2E-VLP on two in-domain image-text datasets: MS-COCO (Lin et al., 2014) and Visual Genome (Krishna et al., 2017).
 - Object detection and image caption annotations in MS-COCO
 - Object detection, region description annotations in Visual Genome.
- Implementation Details
 - Pre-train E2E-VLP model with a total batch size of 32 for 200 epochs on 8 V100 GPUs.

Experiments-Downstream Tasks

VQA

- NLVR2
- Image Caption
- Image-Text Retrieval

Table 4. Comparison of ViLT-B/32 with other models on downstream retrieval tasks. We use SCAN for w/o VLP SOTA results. † additionally used GQA, VQAv2, VG-QA for pretraining. ‡ used open images dataset to expand its visual vocabulary of region feature embeddings. ⓐ indicates RandAugment is applied during finetuning.

Vienel		Timo	Time Text Retriev				rieval				Image Retrieval			
Embed	Model	(ms)	Fl	ickr30k (1K)	Μ	SCOCO ((5K)	Fl	ickr30k (1K)	M	SCOCO	(5K)
Linded		(IIIS)	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
	w/o VLP SOTA	~900	67.4	90.3	95.8	50.4	82.2	90.0	48.6	77.7	85.2	38.6	69.3	80.4
	ViLBERT-Base	~920	-	-	-	-	-	-	58.2	84.9	91.5	-	-	-
Pagion	Unicoder-VL	~1000	86.2	96.3	99.0	62.3	87.1	92.8	71.5	91.2	95.2	48.4	76.7	85.9
Region	UNITER-Base	~900	85.9	97.1	98.8	64.4	87.4	93.1	72.5	92.4	96.1	50.3	78.5	87.2
	OSCAR-Base [†]	~900	-	-	-	70.0	91.1	95.5	-	-	-	54.0	80.8	88.5
	VinVL-Base ^{†‡}	~1000	-	-	-	74.6	92.6	96.3	-	-	-	58.1	83.2	90.1
Crid	Pixel-BERT-X152	~120	87.0	98.9	99.5	63.6	87.5	93.6	71.5	92.1	95.8	50.1	77.6	86.2
Gilu	Pixel-BERT-R50	~60	75.7	94.7	97.1	59.8	85.5	91.6	53.4	80.4	88.5	41.1	69.7	80.5
Lineor	ViLT-B/32	~15	81.4	95.6	97.6	61.8	86.2	92.6	61.9	86.8	92.8	41.3	72.0	82.5
Linear	ViLT-B/32 ^a	~15	83.7	97.2	98.1	62.9	87.1	92.7	62.2	87.6	93.2	42.6	72.8	83.4

Models		Params	VQ Test-dev	A Test-std	NL Dev	VR2 Test-P	COCO O BLEU4	Caption CIDEr
	VisualBERT	110M	70.80	71.00	-	-	-	-
	VLP	110M	70.5	70.7	-	-	36.5	116.9
Single-stream	VLBERT	110M	71.16	-	-	-	-	-
U	Unicoder-VL	110M	-	-	-	-	-	-
	UNITER	110M	72.70	72.91	77.14	77.87	-	-
	OSCAR	110M	73.16	73.61	78.07	78.36	36.5	123.7
	ViLBERT	221M	70.55	70.92	67.40	67.00	-	-
Transformer	12-in-1	221M	73.15	-	-	-	-	-
Two-stream	LXMERT	183M	72.42	72.54	74.90	74.50	-	-
	ERNIE-ViL	210M	72.62	72.85	-	-	-	-
End2End	PixelBERT	142M	71.35	71.42	71.7	72.4	-	-
Our Model	E2E-VLP	94M	73.25	73.67	77.25	77.96	36.2	117.3

Models		Domonia	IR-Flickr30K			TR-Flickr30K		
		Params	R@1	R@5	R@10	R@1	R@5	R@10
	VisualBERT	110M	-	-	-	-	-	-
	VLBERT	110M	-	-	-	-	-	-
Single-stream	Unicoder-VL	110M	71.50	90.90	94.90	86.20	96.30	99.00
0	UNITER	110M	72.52	92.36	96.08	85.90	97.10	98.80
	OSCAR	110M	-	-	-	-	-	-
	ViLBERT	221M	58.20	84.90	91.52	-	-	-
True stresses	12-in-1	221M	67.90	-	-	-	-	-
Two-stream	LXMERT	183M	-	-	-	-	-	-
	ERNIE-ViL	210M	74.44	92.72	95.94	86.70	97.80	99.00
End2End	PixelBERT	142M	59.8	85.5	91.6	75.7	94.7	97.1
Our Model	E2E-VLP	94M	73.58	92.42	96.03	86.24	97.50	98.92

Table 1: Evaluation Results on VQA, NLVR2 and Image Caption.

Table 2: Evaluation Results on Flickr30K.

Experiments-Downstream Tasks

- VQA
- NLVR2
- Image Caption
- Image-Text Retrieval

C AN	
MA	

The left image contains twice the number of dogs as the right image, and at least two dogs in total are standing.

We use SCAN for w/o VLP SOTA	results. †
o expand its visual vocabulary of reg	ion feature

Image Retrieval								
Fl	ickr30k (1K)	M	SCOCO ((5K)			
R@1	R@5	R@10	R@1	R@5	R@10			
48.6	77.7	85.2	38.6	69.3	80.4			
58.2	84.9	91.5	-	-	-			
71.5	91.2	95.2	48.4	76.7	85.9			
72.5	92.4	96.1	50.3	78.5	87.2			
-	-	-	54.0	80.8	88.5			
-	-	-	58.1	83.2	90.1			
71.5	92.1	95.8	50.1	77.6	86.2			
53.4	80.4	88.5	41.1	69.7	80.5			
61.9	86.8	92.8	41.3	72.0	82.5			
62.2	87.6	93.2	42.6	72.8	83.4			

Models		Doromo	VQA		
		Params	Test-dev	Test-std	
	VisualBERT	110M	70.80	71.00	
	VLP	110M	70.5	70.7	
Single-stream	VLBERT	110M	71.16	-	
-	Unicoder-VL	110M	-	-	
	UNITER	110M	72.70	72.91	
	OSCAR	110M	73.16	73.61	
	ViLBERT	221M	70.55	70.92	
True stresses	12-in-1	221M	73.15	-	
Two-stream	LXMERT	183M	72.42	72.54	
	ERNIE-ViL	210M	72.62	72.85	
End2End	PixelBERT	142M	71.35	71.42	
Our Model	E2E-VLP	94M	73.25	73.67	

Table 1: Evaluation Results on VQA, NLVF

One image shows exactly two brown acorns in back-to-back caps on green foliage.

lickr3	0K	TR-Flickr30K			
@5	R@10	R@1	R@5	R@10	
	-	-	-	-	
	-	-	-	-	
0.90	94.90	86.20	96.30	99.00	
2.36	96.08	85.90	97.10	98.80	
	-	-	-	-	
4.90	91.52	-	-	-	
	-	-	-	-	
	-	-	-	-	
2.72	95.94	86.70	97.80	99.00	
5.5	91.6	75.7	94.7	97.1	
2.42	96.03	86.24	97.50	98.92	

on Flickr30K.

Ablation study

Importance of Visual Learning

Model	VQA	NLVR2
E2E-VLP	70.76	72.12
-Image-to-Text Generation	70.20	71.59
-Attribute Prediction	69.92	70.92
-Object Detection	68.85	70.38

Table 3: Ablation tests for different visual pre-training tasks of E2E-VLP (6 layer encoder, and ResNet50 backbone) on development set.

Architecture Selection

Layers	Backbone	Params	VQA	NLVR2
6	r50	49M	70.56	72.12
6	r101	68M	71.42	74.34
6	r152	84M	72.23	76.21
12	r50	59M	71.34	73.04
12	r101	78M	72.43	75.23
12	r152	94M	73.25	77.25

Table 5: Results of different pre-trained model architectures on development set.

Inference Efficiency

Model	Parameters	Avg Time (ms)	VQA	NLVR2
LXMERT UNITER Pixel-BERT	183M 110M 142M	496 501 201	72.42 72.70 71.35	72.54 77.14 71.7
E2E-VLP	94M	192	73.25	77.25

Impact of Input Image Size

Input shorter side	Size longer side	Speedup	VQA	NLVR2
448	448	5x	71.14	75.43
448	746	3x	72.04	75.79
600	1000	1.5x	73.08	76.87
800	1333	-	73.25	77.25

Object Detection with Paired Text

Model	AP	AP_{50}	$ AP_S $	$ AP_M $	$ AP_L $
DETR	40.6	61.6	19.9	44.3	60.2
E2E-VLP	41.9	62.6	20.3	45.6	61.1

Table 7: Results of object detection on MSCOCO development dataset

Thank you