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Motivation

Caltech101 Prompt Accuracy Flowers102 Prompt Accuracy
a [CLASS]. 82.68 a photo of a [CLASS]. 60.86
a photo of [CLASS]. 80.81 a flower photo of a [CLASS]. 65.81
a photo of a [CLASS]. 86.29 a photo of a [CLASS], a type of flower. 66.14
[V]: [V]; ... [V]m [CLASS]. 91.83 [V]1 [V]: ... [V]m [CLASS]. 94.51
(a) (b)
Describable Textures (DTD) Prompt Accuracy EuroSAT Prompt Accuracy
LSS a photo of a [CLASS]. 39.83 a photo of a [CLASS]. 24.17
a photo of a [CLASS] texture. 40.25 a satellite photo of [CLASS]. 37.46
[CLASS] texture. 42.32 a centered satellite photo of [CLASS]. 37.56
[V11 [V]; ... [V]m [CLASS]. 63.58 [V]1 [V]; ... [V]m [CLASS]. 83.53

(c) (d)

Fig. 1 Prompt engineering vs Context Optimization (CoOp). The former needs to use a held-out validation set for
words tuning, which is inefficient; the latter automates the process and requires only a few labeled images for learning.



CotextOptimization
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Fig. 2 Overview of Context Optimization (CoOp). The main idea is to model a prompt’s context using a set of learnable
vectors, which can be optimized through minimizing the classification loss. Two designs are proposed: one is unified context,
which shares the same context vectors with all classes; and the other is class-specific context, which learns for each class a
specific set of context vectors.



CotextOptimization
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Experiment
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Experiment

Table 1 Comparison with zero-shot CLIP on robustness to distribution shift using different vision backbones. M: CoOp’s
context length.

Source Target
Method ImageNet -V2 -Sketch -A -R
ResNet-50
Zero-Shot CLIP 58.18 51.34 33.32 21.65 56.00
Linear Probe CLIP 55.87 45.97 19.07 12.74 34.86
CLIP + CoOp (M =16) 62.95 G5 1Ll 32.74 22.12 54.96
CLIP + CoOp (M =4) 63.33 55.40 34.67 23.06 56.60
ResNet-101
Zero-Shot CLIP 61.62 54.81 38.71 28.05 64.38
Linear Probe CLIP 59.75 50.05 26.80 19.44 47.19
CLIP + CoOp (M =16) 66.60 58.66 39.08 28.89 63.00
CLIP + CoOp (M =4) 65.98 58.60  40.40 29.60 64.98
ViT-B/32
Zero-Shot CLIP 62.05 54.79 40.82 29.57 65.99
Linear Probe CLIP 59.58 49.73 28.06 19.67 47.20
CLIP + CoOp (M =16) 66.85 58.08 40.44 30.62 64.45
CLIP + CoOp (M =4) 66.34 58.24 41.48 31.34 65.78
ViT-B/16
Zero-Shot CLIP 66.73 60.83 46.15 A47.77 73.96
Linear Probe CLIP 65.85 56.26 34.77 35.68 58.43

CLIP + CoOp (M =16) 71.92 64.18 46.71 48.41 74.32
CLIP + CoOp (M =4) 71.73 64.56 47.89 49.93 75.14
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Fig. 5 Investigations on CoOp’s context length and various vision backbones.



Experiment

Table 2 Comparison with prompt engineering and prompt ensembling on ImageNet using different vision backbones.

Method ResNet-50 ResNet-101 ViT-B/32 ViT-B/16
Prompt engineering 58.18 61.26 62.05 66.73
Prompt ensembling 60.41 62.54 63.71 68.74
CoOp 62.95 66.60 66.85 71.92

Table 3 Random vs manual initialization.

Avg %

[VI1[V]2[V]s[V]s  72.65
“a photo of a” 72.65




Interpreting the Learned Prompts

Table 4 The nearest words for each of the 16 context vectors learned by CoOp, with their distances shown in parentheses.

N/A means non-Latin characters.

# ‘ ImageNet‘ Food101 ‘ OxfordPetsl DTD‘ UCF101
1 potd (1.7136) lc (0.6752) tosc (2.5952) boxed (0.9433)|meteorologist (1.5377)
2 that (1.4015)| enjoyed (0.5305) judge (1.2635) seed (1.0498) exe (0.9807)
3 filmed (1.2275) beh (0.5390) fluffy (1.6099) anna (0.8127) parents (1.0654)
4 fruit (1.4864)| matches (0.5646) cart (1.3958)|mountain (0.9509) masterfu] (0.9528)
5 .. (1.5863)| nytimes (0.6993) harlan (2.2948) eldest (0.7111) fe (1.3574)
6 ° (1.7502) prou (0.5905) paw (1.3055) pretty (0.8762) thof (1.2841)
7 excluded (1.2355) lower (0.5390) incase (1.2215) faces (0.7872) where (0.9705)
8 cold (1.4654) N/A bie (1.5454) honey (1.8414) kristen (1.1921)
9 stery (1.6085)| minute (0.5672)| snuggle (1.1578) series (1.6680) imam (1.1297)
10 warri (1.3055) ~ (0.5529) along (1.8298) coca (1.5571) near (0.8942)
11|marvelcomics (1.5638) well (0.5659) enjoyment (2.3495) moon (1.2775) tummy (1.4303)
12 :(1.7387)]  ends (0.6113) it (1.3726) h (1.0382) hel (0.7644)
13 N/A mis (0.5826) 1mpr0v1ng (1.3198) won (0.9314) boop (1.0491)
14 lation (1.5015)|somethin (0.6041) srsly (1.6759)| replied (1.1429) N/A
15 muh (1.4985)| seminar (0.5274)| asteroid (1.3395) sent (1.3173) facial (1.4452)
16 #(1.9340) N/A N/A|piedmont (1.5198) during (1.1755)
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Overfitting problem

Arrival gate Cathedral

i E Zero-shot CoOp CoCoOp
E E [a] [photo] [of] [a] [arrival gate]. [v1] [w2] - .. [var] [arrival gate]. [v1(z)] [v2(x)] ... [var(x)] [arrival gate].
i i [a] [photo] [of] [a] [cathedral]. [vi] [v2] - .. [vad] [cathedral]. [vi(x)] [v2(z)] ... [vam(z)] [cathedral].

Accuracy: 69.36 @ Aceuracy: 80.60 © Aceuracy: 79.74

(a) Both CoOp and CoCoOp work well on the base classes observed during training and beat manual prompts by a significant margin.

Zero-shot CoOp CoCoOp
[a] [photo] [of] [a] [wind farm]. [v1] [w2] ... [vas] [wind farm]. [v1(z)] [w2(x)] - .. [var(z)] [wind farm].
[a] [photo] [of] [a] [train railway]. [vi] [w2] ... [va] [train railway]. [vi(z)] [v2(z)] ... [var(z)] [train railway].

Accuracy: 75.35 @ Accuracy: 65.89 ® Accuracy: 7T6.86 @

(b) The instance-conditional prompts learned by CoCoOp are much more generalizable than CoOp to the unseen classes.

Figure 1. Motivation of our research: to learn generalizable prompts. The images are randomly selected from SUN397 [55], which is
a widely-used scene recognition dataset.



Assumption

* The context, which Is fixed once learned, Is optimized only for a
specific set of (training) classes.

* Make a prompt conditioned on each input instance (image) rather
than fixed once learned could be more generalizable

* Static prompt -> Dynamic prompt



Method

context tokens

V1| V2| | Up [CLASS] - }‘

meta token | T

| Image Encoder

Meta-Net

Figure 2. Our approach, Conditional Context Optimization (Co-
CoOp), consists of two learnable components: a set of context
vectors and a lightweight neural network (Meta-Net) that gener-
ates for each image an input-conditional token.



Method

vm(x) = vm + 1t where 1 = h6(x) and m € {1, 2, ..., M}.
ti(x) = {v1(x), v2(x), ..., vM(x), ci}.

exp(sim(z, g(t,(x)))/7)

S exp(sim(z, g(ti(x))/7)

p(ylx) =



Experiment

(a) Average over 11 datasets.

Base New H
CLIP 6934 7422 | 71.70
CoOp 82.69 6322 | 71.66
CoCoOp 8047 71.69 | 75.83




Experiment

CoCoOp vs. CoOp in Unseen Classes CoCoOp vs. CoOp in Base Classes
UCF101 Food101 [+ 2.37
DTD oxfordpets [N+ 1.53
StanfordCars -0.04| Caltech101
Flowers102 0.4 Imagenet
SUN397 0.86 [ SUN397
Food101 UCF101
EuroSAT DTD
Caltech101 Flowers102
ImageNet EuroSAT
OxfordPets FGVCAircraft
FGVCAircraft StanfordCars
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 -8 -6 -4 -2 0 2
Absolute improvement (%) Absolute change (%)
(a) (b)

Figure 3. Comprehensive comparisons of CoCoOp and CoOp in the base-to-new generalization setting. (aﬁloCoOp is able to gain
consistent improvements over CoOp in unseen classes on all datasets. (b) CoCoOp’s declines in base accuracy are mostly under 3%, which
are far outweighed by the gains in generalization.



Experiment

Table 2. Comparison of prompt learning methods in the-dross-dataset transfer setting. Prompts applied to the 10 target datasets are
learned from ImageNet (16 images per class). Clearly, CoCoOp demonstrates better transferability than CoOp. A denotes CoCoOp’s gain
over CoOp.
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CoOp [63] 71.51 93.70 89.14 6451 68.71 8530 1847 64.15 4192 46.39 6655 63.88
CoCoOp 71.02 9443 90.14 6532 7188 86.06 2294 67.36 45.73 4537 68.21 65.74

A 049 +0.73 +1.00 +0.81 +3.17 +0.76 +4.47 +3.21 +381 -1.02 +1.66 +1.86




Experiment

Table 3. Comparison of manual and learning-based prompts in domain generalization. CoOp and CoCoOp use as training data 16
images from each of the 1,000 classes on ImageNet. In general, CoCoOp is more domain-generalizable than CoOp.

Source Target

Learnable?  ImageNet ImageNetV2  ImageNet-Sketch  ImageNet-A  ImageNet-R

CLIP [40] 66.73 60.83 46.15 47.77 73.96
CoOp [63] v 71.51 64.20 47.99 49.71 75.21
CoCoOp v 71.02 64.07 48.75 50.63 76.18




Ablation Study

Average over 11 datasets Average over 11 datasets

B CoCoOp w/ init d0.45 B CoCaOp (w/o init, M=4}
Bl CoColp w/io init BOo4 %90 E CoCoOp (w/o init, M=8)
I CoCoOp (w/o init, M=16)

To.3a

Table 5. CoCoOp (last row) vs a bigger CoOp on ImageNet.

781

76 1 Model # params Base New | H
741 CoOp (ctx=4) 2,048 7647 67.88|71.92
CoOp (ctx=60) 30,720 76.16 65.34|70.34
CoOp (ctx=4) + Meta-Net 34,816 75.98 70.43 | 73.10
(a) Ablation on initialization. (b) Ablation on context length.

Figure 4. Ablation studies.



