Learning to Prompt for Vision-Language Models

Kaiyang Zhou \cdot Jingkang Yang \cdot Chen Change Loy \cdot Ziwei Liu

Motivation

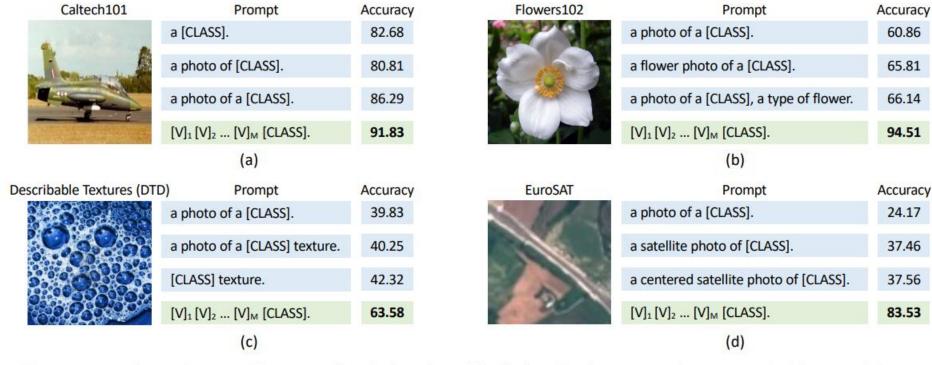


Fig. 1 Prompt engineering vs Context Optimization (CoOp). The former needs to use a held-out validation set for words tuning, which is inefficient; the latter automates the process and requires only a few labeled images for learning.

CotextOptimization

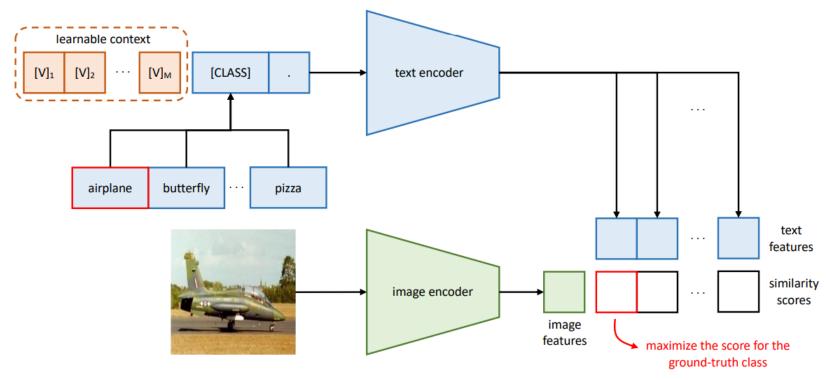


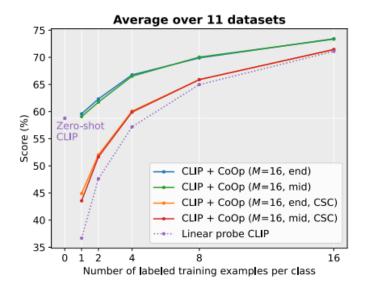
Fig. 2 Overview of Context Optimization (CoOp). The main idea is to model a prompt's context using a set of learnable vectors, which can be optimized through minimizing the classification loss. Two designs are proposed: one is unified context, which shares the same context vectors with all classes; and the other is class-specific context, which learns for each class a specific set of context vectors.

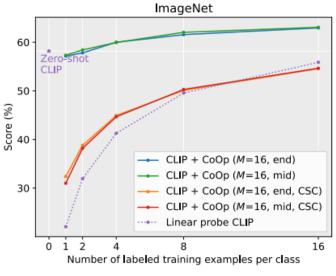
CotextOptimization

$$p(y = i | \boldsymbol{x}) = \frac{\exp(\cos(\boldsymbol{w_i}, \boldsymbol{f})/\tau)}{\sum_{j=1}^{K} \exp(\cos(\boldsymbol{w_j}, \boldsymbol{f})/\tau)}$$

$$\boldsymbol{t} = [\mathbf{V}]_1[\mathbf{V}]_2 \dots [\mathbf{V}]_M[\mathbf{CLASS}] \qquad \qquad \boldsymbol{t} = [\mathbf{V}]_1 \dots [\mathbf{V}]_{\frac{M}{2}}[\mathbf{CLASS}][\mathbf{V}]_{\frac{M}{2}+1} \dots [\mathbf{V}]_M$$

$$p(y = i|\mathbf{x}) = \frac{\exp(\cos(g(\mathbf{t}_i), \mathbf{f})/\tau)}{\sum_{j=1}^{K} \exp(\cos(g(\mathbf{t}_j), \mathbf{f})/\tau)}$$





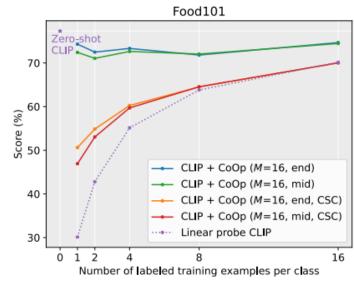


Table 1 Comparison with zero-shot CLIP on robustness to distribution shift using different vision backbones. M: CoOp's context length.

	Source	Target				
Method	ImageNet	-V2	-Sketch	-A	-R	
ResNet-50						
Zero-Shot CLIP	58.18	51.34	33.32	21.65	56.00	
Linear Probe CLIP	55.87	45.97	19.07	12.74	34.86	
CLIP + CoOp (M=16)	62.95	55.11	32.74	22.12	54.96	
CLIP + CoOp (M=4)	63.33	55.40	34.67	23.06	56.60	
ResNet-101						
Zero-Shot CLIP	61.62	54.81	38.71	28.05	64.38	
Linear Probe CLIP	59.75	50.05	26.80	19.44	47.19	
CLIP + CoOp (M=16)	66.60	58.66	39.08	28.89	63.00	
CLIP + CoOp (M=4)	65.98	58.60	40.40	29.60	64.98	
ViT-B/32						
Zero-Shot CLIP	62.05	54.79	40.82	29.57	65.99	
Linear Probe CLIP	59.58	49.73	28.06	19.67	47.20	
CLIP + CoOp (M=16)	$\boldsymbol{66.85}$	58.08	40.44	30.62	64.45	
CLIP + CoOp $(M=4)$	66.34	58.24	41.48	31.34	65.78	
ViT-B/16						
Zero-Shot CLIP	66.73	60.83	46.15	47.77	73.96	
Linear Probe CLIP	65.85	56.26	34.77	35.68	58.43	
CLIP + CoOp (M=16)	71.92	64.18	46.71	48.41	74.32	
CLIP + CoOp (M=4)	71.73	64.56	47.89	49.93	75.14	

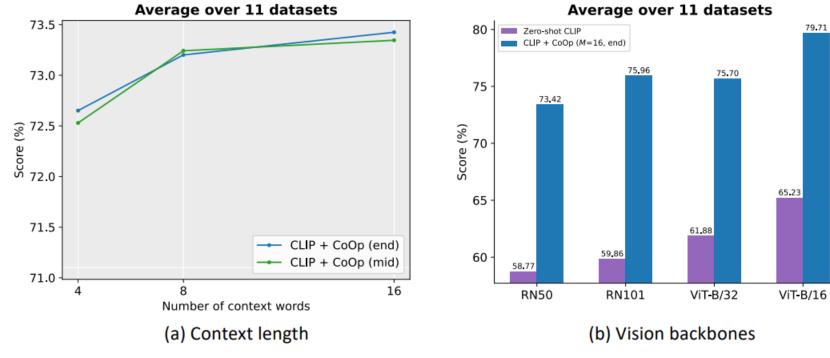


Fig. 5 Investigations on CoOp's context length and various vision backbones.

Table 2 Comparison with prompt engineering and prompt ensembling on ImageNet using different vision backbones.

Method	ResNet-50	ResNet-101	ViT-B/32	ViT-B/16
Prompt engineering Prompt ensembling	58.18 60.41	61.26 62.54	$62.05 \\ 63.71$	66.73 68.74
CoOp	$\boldsymbol{62.95}$	66.60	66.85	$\boldsymbol{71.92}$

Table 3 Random vs manual initialization.

	Avg %
[V] ₁ [V] ₂ [V] ₃ [V] ₄ "a photo of a"	72.65 72.65

Interpreting the Learned Prompts

Table 4 The nearest words for each of the 16 context vectors learned by CoOp, with their distances shown in parentheses. N/A means non-Latin characters.

#	ImageNet	Food101	OxfordPets	DTD	UCF101
1	potd (1.7136)	lc (0.6752)	tosc (2.5952)	boxed (0.9433)	meteorologist (1.5377)
2	that (1.4015)	enjoyed (0.5305)	judge (1.2635)	seed (1.0498)	exe(0.9807)
3	filmed (1.2275)	beh (0.5390)	fluffy (1.6099)	anna (0.8127)	parents (1.0654)
4	fruit (1.4864)	matches (0.5646)	cart (1.3958)	mountain (0.9509)	masterful (0.9528)
5	, (1.5863)	nytimes (0.6993)	harlan (2.2948)	eldest (0.7111)	fe (1.3574)
6	° (1.7502)	prou (0.5905)	paw (1.3055)	pretty (0.8762)	thof (1.2841)
7	excluded (1.2355)	lower (0.5390)	incase (1.2215)	faces (0.7872)	where (0.9705)
8	cold (1.4654)	N/A	bie (1.5454)	honey (1.8414)	kristen (1.1921)
9	stery (1.6085)	minute (0.5672)	snuggle (1.1578)	series (1.6680)	imam (1.1297)
10	warri (1.3055)	$\sim (0.5529)$	along (1.8298)	coca (1.5571)	near (0.8942)
11	marvelcomics (1.5638)	well (0.5659)	enjoyment (2.3495)	moon (1.2775)	tummy (1.4303)
12	.: (1.7387)	ends (0.6113)	jt (1.3726)	lh (1.0382)	hel (0.7644)
13	N/A	mis (0.5826)	improving (1.3198)	won (0.9314)	boop (1.0491)
14	lation (1.5015)	somethin (0.6041)	srsly (1.6759)	replied (1.1429)	N/A
15	muh (1.4985)	seminar (0.5274)	asteroid (1.3395)	sent (1.3173)	facial (1.4452)
16	.# (1.9340)	N/A	N/A	piedmont (1.5198)	during (1.1755)

Conditional Prompt Learning for Vision-Language Models

Kaiyang Zhou Jingkang Yang Chen Change Loy Ziwei Liu S-Lab, Nanyang Technological University, Singapore

{kaiyang.zhou, jingkang001, ccloy, ziwei.liu}@ntu.edu.sg

Overfitting problem

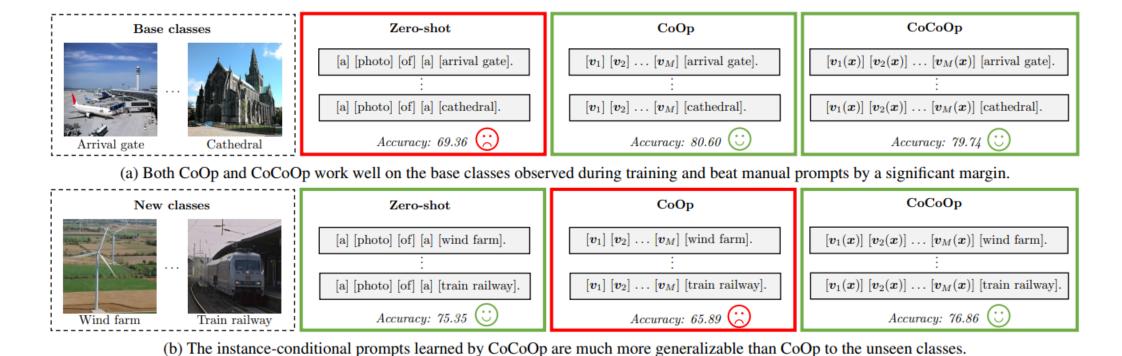


Figure 1. **Motivation of our research: to learn generalizable prompts**. The images are randomly selected from SUN397 [55], which is a widely-used scene recognition dataset.

Assumption

- The context, which is fixed once learned, is optimized only for a specific set of (training) classes.
- Make a prompt conditioned on each input instance (image) rather than fixed once learned could be more generalizable

• Static prompt -> Dynamic prompt

Method

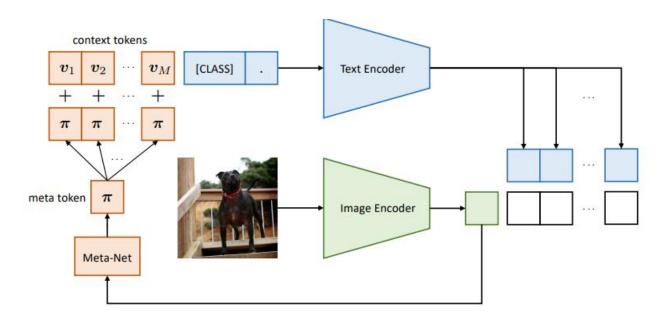


Figure 2. Our approach, Conditional Context Optimization (Co-CoOp), consists of two learnable components: a set of context vectors and a lightweight neural network (Meta-Net) that generates for each image an input-conditional token.

Method

vm(x) = vm +
$$\pi$$
 where π = h θ (x) and m \in {1, 2, ..., M}.
$$ti(x) = \{v1(x), v2(x), \dots, vM(x), ci\}.$$

$$p(y|\boldsymbol{x}) = \frac{\exp(\sin(\boldsymbol{x}, g(\boldsymbol{t}_y(\boldsymbol{x})))/\tau)}{\sum_{i=1}^{K} \exp(\sin(\boldsymbol{x}, g(\boldsymbol{t}_i(\boldsymbol{x}))/\tau)}.$$

(a) Average over 11 datasets.

	Base	New	Н
CLIP	69.34	74.22	71.70
CoOp	82.69	63.22	71.66
CoCoOp	80.47	71.69	75.83

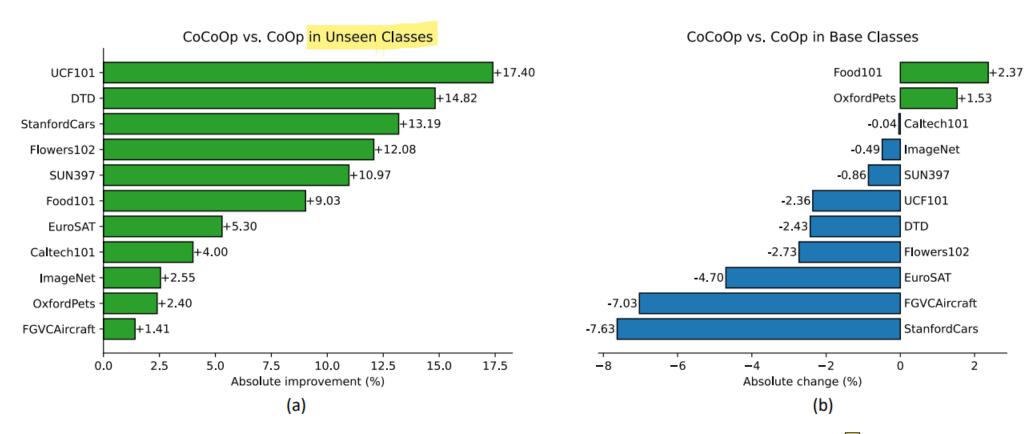


Figure 3. Comprehensive comparisons of CoCoOp and CoOp in the base-to-new generalization setting. (a) CoCoOp is able to gain consistent improvements over CoOp in unseen classes on all datasets. (b) CoCoOp's declines in base accuracy are mostly under 3%, which are far outweighed by the gains in generalization.

Table 2. Comparison of prompt learning methods in the cross-dataset transfer setting. Prompts applied to the 10 target datasets are learned from ImageNet (16 images per class). Clearly, CoCoOp demonstrates better transferability than CoOp. Δ denotes CoCoOp's gain over CoOp.

	Source						Target					
	ImageNet	Caltech 101	OxfordPets	StanfordCars	Flowers 102	Food101	FGVCAircraft	SUN397	DTD	EuroSAT	UCF101	Average
CoOp [63] CoCoOp	71.51 71.02	93.70 94.43	89.14 90.14	64.51 65.32	68.71 71.88	85.30 86.06	18.47 22.94	64.15 67.36	41.92 45.73	46.39 45.37	66.55 68.21	63.88 65.74
Δ	-0.49	+0.73	+1.00	+0.81	+3.17	+0.76	+4.47	+3.21	+3.81	-1.02	+1.66	+1.86

Table 3. **Comparison of manual and learning-based prompts in domain generalization**. CoOp and CoCoOp use as training data 16 images from each of the 1,000 classes on ImageNet. In general, CoCoOp is more domain-generalizable than CoOp.

		Source	Target					
	Learnable?	ImageNet	ImageNetV2	ImageNet-Sketch	ImageNet-A	ImageNet-R		
CLIP [40]		66.73	60.83	46.15	47.77	73.96		
CoOp [63]	✓	71.51	64.20	47.99	49.71	75.21		
CoCoOp	✓	71.02	64.07	48.75	50.63	76.18		

Ablation Study

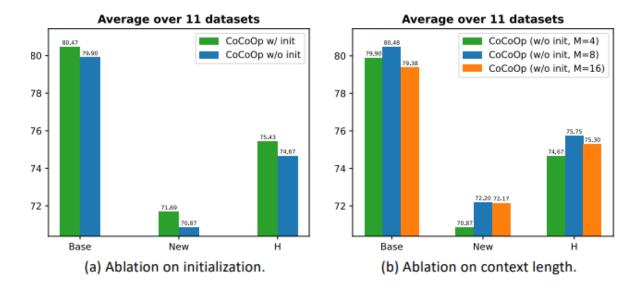


Figure 4. Ablation studies.

Table 5. CoCoOp (last row) vs a bigger CoOp on ImageNet.

Model	# params	Base	New	Н
CoOp (ctx=4)	2,048	76.47	67.88	71.92
CoOp (ctx=60)	2,048 30,720	76.16	65.34	70.34
CoOp (ctx=4) + Meta-Net	34,816	75.98	70.43	73.10