CVPR 2022

Conditional Prompt Learning for Vision-Language Models

Kaiyang Zhou Jingkang Yang Chen Change Loy Ziwei Liu[⊠] S-Lab, Nanyang Technological University, Singapore {kaiyang.zhou, jingkang001, ccloy, ziwei.liu}@ntu.edu.sg

Mengxue

Pre—CLIP

• Prompt: 提示

(1) Contrastive pre-training (2) Create dataset classifier from label text plane car Pepper the Text A photo of Text aussie pup Encoder dog a {object}. Encoder T₁ T₂ T₃ $T_{\rm N}$ bird $I_1 \cdot T_1 = I_1 \cdot T_2$ I₁·T₃ $I_1 \cdot T_N$ I₁ ... (3) Use for zero-shot prediction $I_2 \cdot T_1 \quad I_2 \cdot T_2 \quad I_2 \cdot T_3$ $I_2 \cdot T_N$ T₁ T₂ **T**₃ $T_{\rm N}$ I_2 Image I₃·T₁ $I_3 \cdot T_2 = I_3 \cdot T_3$ I_3 $I_3 \cdot T_N$ Image Encoder ... Encoder $I_1 \cdot T_2 = I_1 \cdot T_3$ I₁ $I_1 \cdot T_1$ $I_1 \cdot T_N$... : ÷ : : ÷ : A photo of I_N $I_N \cdot T_1 = I_N \cdot T_2 = I_N \cdot T_3$ $I_N \cdot T_N$... a dog.

Prompt: A photo of a _____.

Pre—CLIP

television studio (90.2%) Ranked 1 out of 397

- ✓ a photo of a **television studio**.
- × a photo of a **podium indoor**.

× a photo of a conference room.

× a photo of a lecture room.

A photo of a _____.

annual crop land (12.9%) Ranked 4 out of 10

- × a centered satellite photo of permanent crop land.
- × a centered satellite photo of pasture land.
- × a centered satellite photo of highway or road.
- ✓ a centered satellite photo of **annual crop land**.

× a centered satellite photo of brushland or shrubland.

roundabout (96.4%) Ranked 1 out of 45

- ✓ satellite imagery of **roundabout**.
- × satellite imagery of intersection.
- × satellite imagery of **church**.
- × satellite imagery of medium residential.

Satellite imagery of _____.

158 (0.3%) Ranked 83 out of 2000

× a street sign of the number: "1157".

× a street sign of the number: "1165".

× a street sign of the number: "1164".

× a street sign of the number: "1155".

× a street sign of the number: "1364".

A center satellite photo of

A street sign of the number:" "

Pre—CoOp **Context Optimization**

Prompt

a [CLASS]. 82.68 a photo of [CLASS]. 80.81 a photo of a [CLASS]. 86.29 [V]₁ [V]₂ ... [V]_M [CLASS]. 91.83 (a) Prompt Accuracy 39.83

Accuracy

40.25

42.32

63.58

NEX-DECEMENT STATES AND A STATE OF		
1	a photo of a [CLASS].	60.86
1	a flower photo of a [CLASS].	65.81
	a photo of a [CLASS], a type of flower.	66.14
	[V] ₁ [V] ₂ [V] _M [CLASS].	94.51
	(b)	
EuroSAT	Prompt	Accuracy
Star Star	a photo of a [CLASS].	24.17
	a satellite photo of [CLASS].	37.46

a centered satellite photo of [CLASS].

(d)

[V]₁ [V]₂ ... [V]_M [CLASS].

Prompt

Accuracy

37.56

83.53

Fig. 1 Prompt engineering vs Context Optimization (CoOp). The former needs to use a held-out validation set for words tuning, which is inefficient; the latter automates the process and requires only a few labeled images for learning.

Learning to Prompt for Vision-Language Models. arXiv:2109.01134

(c)

Pre-CoOp Context Optimization

Fig. 2 Overview of Context Optimization (CoOp). The main idea is to model a prompt's context using a set of learnable vectors, which can be optimized through minimizing the classification loss. Two designs are proposed: one is unified context, which shares the same context vectors with all classes; and the other is class-specific context, which learns for each class a specific set of context vectors.

Pre-CoOp Context Optimization

Pre—CoOp Context Optimization

Pre-CoOp Context Optimization

Table 1 Comparison with zero-shot CLIP on robustness to distribution shift using different vision backbones. M: CoOp's context length.

	Source		Target			
Method	ImageNet	-V2	-Sketch	-A	-R	
ResNet-50						
Zero-Shot CLIP	58.18	51.34	33.32	21.65	56.00	
Linear Probe CLIP	55.87	45.97	19.07	12.74	34.86	
CLIP + CoOp (M = 16)	62.95	55.11	32.74	22.12	54.96	
CLIP + CoOp (M=4)	63.33	55.40	34.67	23.06	56.60	
ResNet-101						
Zero-Shot CLIP	61.62	54.81	38.71	28.05	64.38	
Linear Probe CLIP	59.75	50.05	26.80	19.44	47.19	
CLIP + CoOp (M = 16)	66.60	58.66	39.08	28.89	63.00	
CLIP + CoOp (M=4)	65.98	58.60	40.40	29.60	64.98	
ViT-B/32						
Zero-Shot CLIP	62.05	54.79	40.82	29.57	65.99	
Linear Probe CLIP	59.58	49.73	28.06	19.67	47.20	
CLIP + CoOp (M = 16)	66.85	58.08	40.44	30.62	64.45	
CLIP + CoOp (M=4)	66.34	58.24	41.48	31.34	65.78	
ViT-B/16						
Zero-Shot CLIP	66.73	60.83	46.15	47.77	73.96	
Linear Probe CLIP	65.85	56.26	34.77	35.68	58.43	
CLIP + CoOp (M = 16)	71.92	64.18	46.71	48.41	74.32	
CLIP + CoOp (M=4)	71.73	64.56	47.89	49.93	75.14	

Table 3: Random vs. manual initialization.

	Avg %
$[V]_1[V]_2[V]_3[V]_4$	71.26
"a photo of a"	71.51

CLIP + CoOp (M=16, end) vs. Zero-Shot CLIP

Fig. 4 Comparison with hand-crafted prompts.

Pre-CoOp Context Optimization

#	ImageNet	Food101	OxfordPets	DTD	
1	potd (1.7136)	lc (0.6752)	tosc (2.5952)	boxed (0.9433)	
2	that (1.4015)	enjoyed (0.5305)	judge (1.2635)	seed (1.0498)	
3	filmed (1.2275)	beh (0.5390)	fluffy (1.6099)	anna (0.8127)	
4	fruit (1.4864)	matches (0.5646)	cart (1.3958)	mountain (0.9509)	
5	, (1.5863)	nytimes (0.6993)	harlan (2.2948)	eldest (0.7111)	
6	° (1.7502)	prou (0.5905)	paw (1.3055)	pretty (0.8762)	
7	excluded (1.2355)	lower (0.5390)	incase (1.2215)	faces (0.7872)	. :
8	cold (1.4654)	N/A	bie (1.5454)	honey (1.8414)	
9	stery (1.6085)	minute (0.5672)	snuggle (1.1578)	series (1.6680)	
10	warri (1.3055)	$\sim (0.5529)$	along (1.8298)	$\cos((1.5571))$	
11	marvelcomics (1.5638)	well (0.5659)	enjoyment (2.3495)	moon (1.2775)	
12	.: (1.7387)	ends (0.6113)	jt (1.3726)	lh (1.0382)	
13	N/A	mis (0.5826)	improving (1.3198)	won (0.9314)	
14	lation (1.5015)	somethin (0.6041)	srsly (1.6759)	replied (1.1429)	
15	muh (1.4985)	seminar (0.5274)	asteroid (1.3395)	sent (1.3173)	
16	.# (1.9340)	N/A	N/A	piedmont (1.5198)	

Motivation—CoCoOp Conditional Context Optimization

To learn generalizable prompts.

Base classes	Zero-shot	СоОр	CoCoOp
	[a] [photo] [of] [a] [arrival gate]. : [a] [photo] [of] [a] [cathedral]. Accuracy: 69.36	$\begin{bmatrix} \boldsymbol{v}_1 & [\boldsymbol{v}_2] & \dots & [\boldsymbol{v}_M] \text{ [arrival gate].} \\ \vdots \\ \begin{bmatrix} \boldsymbol{v}_1 & [\boldsymbol{v}_2] & \dots & [\boldsymbol{v}_M] \text{ [cathedral].} \\ \end{bmatrix}$ $Accuracy: 80.60 \bigcirc$	$egin{aligned} & [m{v}_1(m{x})] \; [m{v}_2(m{x})] \; \dots \; [m{v}_M(m{x})] \; [ext{arrival gate}]. \ & \vdots \ & & & & & & & & & & & & & & & &$

(a) Both CoOp and CoCoOp work well on the base classes observed during training and beat manual prompts by a significant margin.

New classes	Zero-shot	СоОр	СоСоОр
	[a] [photo] [of] [a] [wind farm]. . [a] [photo] [of] [a] [train railway]. Accuracy: 75.35	$\begin{bmatrix} \boldsymbol{v}_1 & [\boldsymbol{v}_2] & \dots & [\boldsymbol{v}_M] & [\text{wind farm}]. \\ \vdots \\ \begin{bmatrix} \boldsymbol{v}_1 & [\boldsymbol{v}_2] & \dots & [\boldsymbol{v}_M] & [\text{train railway}]. \\ Accuracy: & 65.89 & \bigcirc \end{bmatrix}$	$\begin{bmatrix} \boldsymbol{v}_1(\boldsymbol{x}) & [\boldsymbol{v}_2(\boldsymbol{x})] & \dots & [\boldsymbol{v}_M(\boldsymbol{x})] \text{ [wind farm].} \\ \vdots \\ & \vdots \\ \begin{bmatrix} \boldsymbol{v}_1(\boldsymbol{x}) & [\boldsymbol{v}_2(\boldsymbol{x})] & \dots & [\boldsymbol{v}_M(\boldsymbol{x})] \text{ [train railway].} \\ & Accuracy: \ 76.86 \bigcirc \\ \end{bmatrix}$

(b) The instance-conditional prompts learned by CoCoOp are much more generalizable than CoOp to the unseen classes.

Framework—CoCoOp

 In this work, the Meta-Net is built with a two-layer bottleneck structure (Linear-ReLU-Linear), with the hidden layer reducing the input dimension by 16×.

Comparison of CLIP/CoOp/CoCoOp

$$p(y|\boldsymbol{x}) = \frac{\exp(\sin(\boldsymbol{x}, \boldsymbol{w}_y)/\tau)}{\sum_{i=1}^{K} \exp(\sin(\boldsymbol{x}, \boldsymbol{w}_i)/\tau)}, \qquad p(y|\boldsymbol{x}) = \frac{\exp(\sin(\boldsymbol{x}, g(\boldsymbol{t}_y))/\tau)}{\sum_{i=1}^{K} \exp(\sin(\boldsymbol{x}, g(\boldsymbol{t}_i)/\tau)}. \qquad p(y|\boldsymbol{x}) = \frac{\exp(\sin(\boldsymbol{x}, g(\boldsymbol{t}_y(\boldsymbol{x})))/\tau)}{\sum_{i=1}^{K} \exp(\sin(\boldsymbol{x}, g(\boldsymbol{t}_i)/\tau)}.$$

Generalization From Base to New Classes

- Split the classes equally into two groups: <u>base classes</u> and <u>new classes</u>
- Trained on <u>base classes</u>
- Evaluated on the base and new classes separately to test generalizability
- 16 shots
- Vision backbone in CLIP, i.e., ViT-B/16
- Fix the context length to 4 and initialize the context vectors using the pre-trained word embeddings of "a photo of a" for both CoOp and CoCoOp.

Generalization From Base to New Classes

(a) Av	erage ove	r 11 datas	sets.	(b) ImageNet.				
	Base	New	H	10 	Base	New	Н	5- -
CLIP	69.34	74.22	71.70	CLIP	72.43	68.14	70.22	CLIP
CoOp	82.69	63.22	71.66	CoOp	76.47	67.88	71.92	CoOp
CoCoOp	80.47	71.69	75.83	CoCoOp	75.98	70.43	73.10	CoCoC
	(d) Oxfo	rdPets.			(e) Stanfor	rdCars.		
	Base	New	H		Base	New	H	
CLIP	91.17	97.26	94.12	CLIP	63.37	74.89	68.65	CLIP
CoOp	93.67	95.29	94.47	CoOp	78.12	60.40	68.13	CoOp
CoCoOp	95.20	97.69	96.43	CoCoOp	70.49	73.59	72.01	CoCoC
	(g) Foo	d101.		(h) FGVC	Aircraft.		
6	Base	New	Н	5. 	Base	New	Н	
CLIP	90.10	91.22	90.66	CLIP	27.19	36.29	31.09	CLIP
CoOp	88.33	82.26	85.19	CoOp	40.44	22.30	28.75	CoOp
CoCoOp	90.70	91.29	90.99	CoCoOp	33.41	23.71	27.74	CoCoC
	(j) DT	D.			(k) Euro	oSAT.		
	Base	New	Н		Base	New	Н	
CLIP	53.24	59.90	56.37	CLIP	56.48	64.05	60.03	CLIP
CoOp	79.44	41.18	54.24	CoOp	92.19	54.74	68.69	CoOp
CoCoOp	77.01	56.00	64.85	CoCoOp	87.49	60.04	71.21	CoCo

	(c) Calter	h101.	
	Base	New	Н
CLIP	96.84	94.00	95.40
CoOp	98.00	89.81	93.73
CoCoOp	97.96	93.81	95.84
	(f) Flowe	rs102.	
	Base	New	Н
CLIP	72.08	77.80	74.83
CoOp	97.60	59.67	74.06
CoCoOp	94.87	71.75	81.71
	(i) <mark>SUN</mark>	397.	
	Base	New	Н
CLIP	69.36	75.35	72.23
CoOp	80.60	65.89	72.51
CoCoOp	79.74	76.86	78.27
	(l) UCI	F101.	
	Base	New	H
CLIP	70.53	77.50	73.85
CoOn	84.69	56.05	67.46
COOP			

$H = 2 * (acc_{\mathcal{Y}^{tr}} * acc_{\mathcal{Y}^{ts}}) / (acc_{\mathcal{Y}^{tr}} + acc_{\mathcal{Y}^{ts}})$ (16)

H: Harmonic mean (to highlight the generalization trade-off [54]).

where $acc_{\mathcal{Y}^{tr}}$ and $acc_{\mathcal{Y}^{ts}}$ represent the accuracy of images from seen (\mathcal{Y}^{tr}) , and images from unseen (\mathcal{Y}^{ts}) classes re-

Cross-Dataset Transfer

	Source		Target									
	ImageNet	Caltech101	OxfordPets	StanfordCars	Flowers102	Food101	FGVCAircraft	SUN397	DTD	EuroSAT	UCF101	Average
CoOp [62] CoCoOp	71.51 71.02	93.70 94.43	89.14 90.14	64.51 65.32	68.71 71.88	85.30 86.06	18.47 22.94	64.15 67.36	41.92 45.73	46.39 45.37	66.55 68.21	63.88 65.74
Δ	-0.49	+0.73	+1.00	+0.81	+3.17	+0.76	+4.47	+3.21	+3.81	-1.02	+1.66	+1.86

Domain Generalization

		Source	Target			
	Learnable?	ImageNet	ImageNetV2	ImageNet-Sketch	ImageNet-A	ImageNet-R
CLIP [40]		66.73	60.83	46.15	47.77	73.96
CoOp [62]	\checkmark	71.51	64.20	47.99	49.71	75.21
CoCoOp	\checkmark	71.02	64.07	48.75	50.63	76.18

Further Analysis

Class-Incremental Test

	Learnable?	Accuracy
CLIP [40]		65.22
CoOp [62]	\checkmark	65.55
CoCoOp	\checkmark	69.13

Average over 11 datasets

Model	# params	Base	New	H
CoOp (ctx=4)	2,048	76.47	67.88	71.92
CoOp (ctx=60)	30,720	76.16	65.34	70.34
CoOp (ctx=4) + Meta-Net	34,816	75.98	70.43	73.10

(b) Ablation on context length.

Limitations

- The first limitation is about training efficiency: CoCoOp is slow to train and would consume a significant amount of GPU memory if the batch size is set larger than one. The reason is because CoCoOp is based on an instanceconditional design that requires for each image an independent forward pass of instance-specific prompts through the text encoder. This is much less efficient than CoOp that only needs a single forward pass of prompts through the text encoder for an entire mini-batch of any size.
- The second limitation is that on 7 out of the 11 datasets (see Table 1), CoCoOp' s performance in unseen classes still lags behind CLIP' s, indicating that more efforts are needed from the community to fully close or overturn the gaps between manual and learning-based prompts.

Thanks