CVPR22 – Open-Set

Papers

- VGSE: Visually-Grounded Semantic Embeddings for Zero-Shot Learning
- Open-Vocabulary One-Stage Detection with Hierarchical Visual-Language Knowledge Distillation
- Decoupling Zero-Shot Semantic Segmentation
- Open-Vocabulary Instance Segmentation via Robust Cross-Modal Pseudo-Labeling
- ProposalCLIP: Unsupervised Open-Category Object Proposal Generation via Exploiting CLIP Cues
- Distinguishing Unseen from Seen for Generalized Zero-shot Learning

Open-set

- Opposite to close-set, which train on class set A, test on A.
- Anomaly Detection
 - Identify unexpected patterns. (K class \rightarrow K+1 class)
- Zero-shot
 - Identify class of unseen object
 - Train with auxiliary information
- Open-world

polar bear black: no white: yes brown: no stripes: no water: yes eats fish: yes

- Identify unknown object \rightarrow human annotation \rightarrow train with new class
- Open-vocabulary
 - Identify class of unseen object
 - Align embedding space between vision and text

Wenjia Xu^{1,7,8} Yongqin Xian² Jiuniu Wang^{5,7,8} Bernt Schiele³ Zeynep Akata^{3,4,6} ¹ Beijing University of Posts and Telecommunications ² ETH Zurich ³ Max Planck Institute for Informatics ⁴ University of Tübingen ⁵ City University of Hong Kong ⁶ Max Planck Institute for Intelligent Systems

⁷ University of Chinese Academy of Sciences ⁸ Aerospace Information Research Institute, CAS

- Dataset
 - AWA2, 30_475 images, 50 animal classes, 40 seen
 - 85 numeric attribute values for each class
 - CUB, 11_788 images, 200 bird classes, 150 seen
 - 312 Binary Attributes
 - SUN, 14_340 images, 717 scene classes, 645 seen
 - 102 attributes

zebra

black: yes white: yes brown: no stripes: yes water: no eats fish: no

- Motivation
 - Semantic attributes annotation is labor-intensive. Recently, many works use word embedding instead.
 - Word embedding not always reflect visual similarities
 - Propose to discover semantic embeddings containing discriminative visual properties

- Patch Clustering
 - Watershed segmentation algorithm.
 - Split into around 9 parts per image.
 - Cluster layer
 - Output k-dim vector, k clusters
 - Pretext task

- Patch_i and its neighbors should in same cluster (L2 neighbor)
- Avoid all image patches assigned to same cluster

$$\mathcal{L}_{clu} = -\sum_{x_{nt} \in X^{sp}} \sum_{x_i \in X^{sp}_{nb}} \log(a_{nt}^T a_i), \quad \mathcal{L}_{pel} = \sum_{k=1}^{D_v} \bar{a}_{nt}^k \log \bar{a}_{nt}^k, \quad \bar{a}_{nt}^k = \frac{1}{N_s N_t} \sum_{x_{nt} \in X^{sp}} a_{nt}^k,$$

- Class discrimination
 - Cluster to class layer
 - CE loss, Seen classes

$$\mathcal{L}_{cls} = -\log \frac{\exp\left(p\left(y_n | x_{nt}\right)\right)}{\sum_{\hat{y} \in Y^s} \exp\left(p\left(\hat{y} | x_{nt}\right)\right)} \,.$$

- Semantic relatedness
 - Map cluster to semantic space
 - word2vec

$$\mathcal{L}_{sem} = \|S \circ a_{nt} - \phi^w(y_n)\|_2 ,$$

- Seen semantic embedding
 - Get image embedding by averaging all patch

$$a_n = \frac{1}{N_t} \sum_{t=1}^{N_t} a_{nt} \,.$$

• Get semantic embedding for class y_n by averaging all image belong to y_n

$$\phi^{_{VGSE}}(y_n) = \frac{1}{|I_i|} \sum_{j \in I_i} a_j$$

- Class Relation Module
 - Formulate the similarity between seen and unseen
 - Use word2vec as external knowledge
- Solution
 - (1) directly averaging semantic embedding
 - (2) optimizing a similarity matrix

- Weighted Average
 - Retrieve nearest class neighbors in seen class
 - L2 distance over w2v embedding space
 - Semantic embedding:

$$\phi^{_{VGSE}}(y_m) = \frac{1}{|Y_{nb}^s|} \sum_{\tilde{y} \in Y_{nb}^s} sim\left(y_m, \tilde{y}\right) \cdot \phi^{_{VGSE}}(\tilde{y}),$$

$$sim(y_m, \tilde{y}) = \exp(-\eta \|\phi^w(y_m) - \phi^w(\tilde{y})\|_2),$$

- Similarity Matrix Optimization
 - Learn a similarity matrix
 - y_m, unseen class
 - r_i, similarity between y_m and i-th seen class

$$\begin{split} \min_{r} \left\| \phi^{w}(y_{m}) - r^{T} \phi^{w}(Y^{s}) \right\|_{2} \\ \text{s.t.} \quad \alpha < r < 1 \quad and \quad \sum_{i=1}^{|Y^{s}|} r_{i} = 1. \end{split}$$

*lower bound is 0 or -1

			Zero-Shot Learning			Generalized Zero-Shot Le					earning			
			AWA2 CUB SUN			AWA2 CUB				SUN				
	ZSL Model	Semantic Embeddings	T1	T1	T1	u	S	Н	u	S	Н	u	S	Н
enerative		w2v[31]	49.0	22.5	37.8	38.6	60.1	47.0	16.3	39.7	23.1	26.0	28.2	27.0
	CADA-VAE [43]	VGSE-SMO (Ours)	52.7	24.8	40.3	46.9	61.6	53.9	18.3	44.5	25.9	29.4	29.6	29.5
	f-VAEGAN-D2[61]	w2v [31]	58.4	32.7	39.6	46.7	59.0	52.2	23.0	44.5	30.3	25.9	33.3	29.1
0		VGSE-SMO (Ours)	61.3	35.0	41.1	45.7	66.7	54.2	24.1	45.7	31.5	25.5	35.7	29.8
(D	SJE [2]	w2v[31]	53.7	14.4	26.3	39.7	65.3	48.8	13.2	28.6	18.0	19.8	18.6	19.2
ative		VGSE-SMO (Ours)	62.4	26.1	35.8	46.8	72.3	56.8	16.4	44.7	28.3	28.7	25.2	26.8
mer	GEM-7SI [28]	w2v [31]	50.2	25.7	-	40.1	80.0	53.4	11.2	48.8	18.2	-	-	-
Von-Ge		VGSE-SMO (Ours)	58.0	29.1	-	49.1	78.2	60.3	13.1	43.0	20.0	-	-	-
	APN [62]	w2v[31]	59.6	22.7	23.6	41.8	75.0	53.7	17.6	29.4	22.1	16.3	15.3	15.8
	APN [02]	VGSE-SMO (Ours)	64.0	28.9	38.1	51.2	81.8	63.0	21.9	45.5	29.5	24.1	31.8	27.4

Table 1. Comparing our VGSE-SMO, with w2v semantic embedding over state-of-the-art ZSL models. In ZSL, we measure Top-1 accuracy (T1) on unseen classes, in GZSL on seen/unseen (s/u) classes and their harmonic mean (H). Feature Generating Methods, i.e., f-VAEGAN-D2, and CADA-VAE generating synthetic training samples, and SJE, APN, GEM-ZSL using only real image features.

Semantic Embeddings	External Zero-shot learning		ing	Semantic Embeddings	Zero-shot learning			
	knowledge	AWA2	CUB	SUN	0	AWA2	CUB	SUN
w2v [31]	w2v	58.4	32.7	39.6	k-means-SMO	54.5 ± 0.4	15.0 ± 0.5	25.2 ± 0.4
ZSLNS [39]		57.4	27.8	-	ResNet-SMO	55.3 ± 0.2	15.4 ± 0.1	25.1 ± 0.1
GAZSL [67]		-	34.4	-	$\mathcal{L}_{clu} + \mathcal{L}_{pel}$ (baseline + SMO)	56.6 ± 0.2	16.7 ± 0.2	26.3 ± 0.3
Auto-dis [3]		52.0	-	-	$+\mathcal{L}_{cls}$	61.2 ± 0.1	23.7 ± 0.2	30.5 ± 0.2
CAAP [5]	T and H	55.3	31.9	35.5	$+\mathcal{L}_{sem}$ (VGSE-SMO)	62.4 ± 0.3	$\textbf{26.1}\pm0.3$	35.8 ± 0.2
VGSE-SMO (Ours)	w2v	61.3 \pm 0.3	35.0 ± 0.2	41.1 ± 0.3	VGSE-WAvg	57.7 ± 0.2	25.8 ± 0.3	35.3 ± 0.2
						-		

Table 2. Comparing with state-of-the-art methods for learning semantic embeddings with less human annotation (T: online textual articles, H: human annotation) using same image features and ZSL model (f-VAEGAN-d2 [61]).

Table 3. Ablation study over the PC module reporting ZSL T1 on AWA2, CUB, and SUN (mean accuracy and std over 5 runs). The baseline is the PC module with the cluster loss \mathcal{L}_{clu} and \mathcal{L}_{pel} . Our full model VGSE-SMO is trained with two additional losses \mathcal{L}_{cls} , \mathcal{L}_{sem} . Two kinds of semantic embeddings learned from k-means clustering and pretrained ResNet are listed below for comparison.

Seen

Unseen

deer

panda

sheep

zebra

tiger

bobcat giraffe

Zongyang Ma^{1,2}, Guan Luo^{1,2}, Jin Gao^{1,2,†}, Liang Li^{3,†}, Yuxin Chen^{1,2}, Shaoru Wang^{1,2} Congxuan Zhang⁴, and Weiming Hu^{1,2,5} ¹NLPR, Institute of Automation, Chinese Academy of Sciences ²School of Artificial Intelligence, University of Chinese Academy of Sciences ³Brain Science Center, Beijing Institute of Basic Medical Sciences ⁴Nanchang Hangkong University ⁵CAS Center for Excellence in Brain Science and Intelligence Technology mazongyang2020@ia.ac.cn, {gluo,jin.gao}@nlpr.ia.ac.cn, liang.li.brain@aliyun.com

- Motivation
 - One-stage detector is more efficient
 - Absence of class-agnostic object proposals $\leftarrow \rightarrow$ Find unseen objects
 - Open-vocabulary one-stage detection

- Network
 - Based on ATSS, which based on FCOS
 - Per-pixel prediction
 - Class subnet, (hid_dim, cls_num) \rightarrow (hid_dim, emb_dim)

• IKD

- Select positive samples
- Crop image based on box pred, data augmentation
- L1 loss supervision

• IKD

- Select positive samples
- Crop image based on box pred, data augmentation
- L1 loss supervision

Norm	Weight	Region	Area	AR_{50}	AP_{50}
L_1	1	pred	$1 \times$	62.4	14.6
L_2	1	pred	$1 \times$	65.1	12.8
L_2	10	pred	$1 \times$	63.6	14.6
L_1	1	GT	$1 \times$	62.8	14.5
L_1	1	pred	$1.5 \times$	64.5	15.3

Table 2. Comparisons between different sub-module options in IKD. *pred* and *GT* mean cropping regions from prediction boxes and ground-truth boxes, respectively. $1 \times$ and $1.5 \times$ represent cropping the original box and its $1.5 \times$ center expansion respectively.

• GKD

- Whole caption is sent into CLIP text encoder
- Full image feature (5 FPN layers, $\frac{HW}{NN}$ patches), pool into vector
- Query: text, Key: vision
- Caption-Image score
 - <<mark>Text</mark>, Output>
- N*N, Contrastive loss

• GKD

- Whole caption is sent into CLIP text encoder
- Full image feature (5 FPN layers, $\frac{HW}{NN}$ patches), pool into vector
- Query: text, Key: vision
- Caption-Image score
 - <<mark>Text</mark>, Output>
- N*N, Contrastive loss

•	Patch	Pool	Loss	bs/gpu	AR_{50}	AP_{50}
	4	Ave	CL	8	59.2	12
	4	Max	CL	8	64.2	20.1
	3	Max	CL	8	61.1	20.7
	8	Max	CL	8	60.8	13.7
	3	Max	PL	8	60.9	17.9
	3	Max	CL	4	65.6	20.5

Table 3. Comparisons between different sub-module options in GKD. Ave and Max represent using Average Pooling and Max Pooling to obtain patch features respectively. CL denotes training with the contrastive learning loss, while PL only considers the cosine similarities between positive pairs. bs/gpu is the batch size on each GPU during training.

- Negative samples
 - Sampling negative samples will boost the performance
 - Identify novel foreground region as background
 - Sampling 10% negative samples

Nagativa complac		GKD	Ba	ise	Novel		
			AR_{50}	AP_{50}	AR_{50}	AP_{50}	
1:1			71.0	37.0	63.0	16.8	
10%	\checkmark		75.9	44.3	62.4	14.6	
100%	\checkmark		74.5	44.4	60.3	9.0	
1:1			69.2	34.9	60.2	19.3	
10%		\checkmark	74.0	42.7	61.1	20.7	
100%			72.4	42.6	56.4	18.7	

Table 5. Comparisons between different sampling strategies for negative samples. 1:1, 10%, 100% mean sampling the same number of negative samples as the positive samples, sampling 10 % of the negative samples, and using all the negative samples.

Method		Base/Novel	ZSD	GZSD			
		Wiethou	Dase/Nover	Novel	Base	Novel	All
		SB [1]	48/17	0.70	29.2	0.31	24.9
		LAB [1]	48/17	0.27	20.8	0.22	18.0
	ZS	DESE [1]	48/17	0.54	26.7	0.27	22.1
TS		BLC [39]	48/17	9.9	42.1	4.50	32.3
		ZSI* [40]	48/17	11.4	46.5	4.83	35.6
	OV	OVR-CNN [36]	48/17	16.7	-	-	34.3
		ViLD* [8]	48/17	-	59.5	27.6	51.3
	ZS	PL* [25]	48/17	10.0	35.9	4.12	27.9
05		DELO [42]	48/17	7.6	13.8	3.41	13.0
05	OV	ZSD-YOLO* [35]	48/17	13.4	31.7	13.6	27.0
		HierKD(ours)	48/17	25.3	51.3	20.3	43.2
TS	75	BLC [39]	65/15	13.1	36.0	13.1	31.7
		ZSI* [40]	65/15	13.6	38.7	13.6	34.0
	ZS	PL* [25]	65/15	12.4	34.1	12.4	30.0
OS	OV	ZSD-YOLO* [35]	65/15	18.3	31.7	17.9	29.2
	Οv	HierKD(ours)	65/15	27.4	48.9	20.4	43.6

Table 7. **Comparison with other state-of-the-art methods:** * denotes the state-of-the-art methods in various settings. "TS" and "OS" are abbreviation of two-stage and one-stage detectors, respectively. Note that we classify Cascade R-CNN based detectors as generalized two-stage methods. "ZS" and "OV" indicate that the models belong to zero-shot and open-vocabulary detectors, respectively.

Jian Ding^{1,2}, Nan Xue¹, Gui-Song Xia¹, Dengxin Dai² ¹CAPTAIN, Wuhan University, China ²MPI for Informatics, Germany {jian.ding, xuenan, guisong.xia}@whu.edu.cn, ddai@mpi-inf.mpg.de

- Motivation
 - Pixel-level zero-shot classification problem X
 - Limited capability to integrate vision-language models
 - Decoupling Zero-Shot Segmentation
 - Class-agnostic grouping task
 - Zero-shot classification task

(c) decoupled zero shot segmentation (ours)

(3) ZegFormer. This variant is our full model. We first fuse $p_q(c)$ and $p'_q(c)$ for each query as:

$$p_{q,\text{fusion}}(c) = \begin{cases} p_q(c)^{\lambda} \cdot p_{q,\text{avg}}^{(1-\lambda)} & \text{if } c \in S \\ p_q(c)^{(1-\lambda)} \cdot p_q'(c)^{\lambda} & \text{if } c \in U, \end{cases}$$
(3)

	preprocess	Seen	Unseen	Harmonic
ZegFormer-seg		37.4	21.4	27.2
	crop	36.6	19.7	25.6
ZegFormer	mask	36.0	31.0	33.3
	crop and mask	35.9	33.1	34.4

Figure 3. Comparison between three preprocess for a segment.

Dat Huynh1*Jason Kuen2Zhe Lin2Jiuxiang Gu2Ehsan Elhamifar11Northeastern University2Adobe Research1{huynh.dat, e.elhamifar}@northeastern.edu2{kuen, zlin, jigu}@adobe.com

Instance segmentation, Open-vocabulary, Weak supervision

- Motivation
 - Aims at segment novel classes without mask annotations
 - Caption can't provide details required in pixel-wise segmentation
 - Propose a cross-modal pseudo-labeling framework

• Framework

- Input
 - Region proposals (ROI Align)
 - Nouns from image caption
- Target
 - Mask
 - Class (Embedding similarity)

*background embedding is full of 0

• Mask supervision

• Simple BCE, bad teacher prediction

$$\sum_{o \in \mathcal{O}_c} \sum_{x,y} \mathcal{L}_{\text{BCE}} (\boldsymbol{M}_o^{xy} | g_{\text{Mask}}^{xy} (\boldsymbol{f}_{\boldsymbol{b}_o})),$$

• Assumption: pseudo mask is corrupted by a Gaussian noise, var can be estimated

$$\mathcal{L}_{M}(\mathcal{Y}_{c}|\boldsymbol{I}_{c},g) = \sum_{o \in \mathcal{O}_{c}} \sum_{x,y} \mathcal{L}_{BCE}(\boldsymbol{M}_{o}^{xy}|g_{Mask}^{xy}(\boldsymbol{f}_{\boldsymbol{b}_{o}}) + \epsilon_{o}^{xy})$$
$$\epsilon_{o}^{xy} \sim \mathcal{N}(0, g_{Noise}^{xy}(\boldsymbol{f}_{\boldsymbol{b}_{o}})),$$

*Noise is per-pixel predicted*Noise is predicted based on object region

Hengcan Shi, Munawar Hayat, Yicheng Wu, Jianfei Cai Department of Data Science and AI, Monash University, Australia {hengcan.shi, munawar.hayat, yicheng.wu, jianfei.cai}@monash.edu

- Motivation
 - Require a large number of bounding box annotations
 - Can only generate proposals for limited object categories

Figure 4. Illustration of our ProposalCLIP. (a) The initial proposal generation model extracts initial proposals. (b) The CLIP proposal selection model selects and re-scores proposals based on CLIP cues. (c) The graph-based proposal merging model corrects fragmented proposals based on CLIP features. (d) The proposal regression model refines proposals.

• Select 60% low-similarity-entropy initial proposal

• Merging

- Semi-supervise
 - intersection between top 1% low-entropy proposals and top 5% high-initialscore proposals

$$S_t = -\frac{T}{C} \frac{E_t}{\sqrt{\sum_{t=1}^T E_t^2}} + \lambda_{sim} \max_{c=1,\dots,C} Sim_{t,c} + \lambda_{sl}SL_t$$

Distinguishing Unseen from Seen for Generalized Zero-shot Learning

Hongzu Su¹ Jingjing Li^{12*} Zhi Chen³ Lei Zhu⁴ Ke Lu¹ ¹University of Electronic Science and Technology of China ² Institute of Electronic and Information Engineering of UESTC in Guangdong ³The University of Queensland ⁴Shandong Normal University

Zero-shot, GAN

Distinguishing Unseen from Seen for Generalized Zero-shot Learning

Figure 2. Illustration of our framework. E_v , D_v , E_s and D_s refer to visual encoder, visual decoder, semantic encoder and semantic decoder, respectively. Notations $z_x, z_{a^s}, z_{\tilde{x}}$ and z_{a^u} denote latent representations of seen visual samples, seen semantic descriptions, fictitious visual samples and unseen semantic descriptions, respectively. Notice that fictitious classes are generated with semantic encoder and visual decoder in our method. Red lines indicate the generation of fictitious classes.