01 Background for Few-Shot Segmentation

Motivation

- Deep learning based computer vision systems have largely depended on large-scale training sets
- Deep networks mostly work with predefined classes and are incapable of generalizing to new ones

Few shot: learn how to recognize novel objects after seeing only a handful of exemplars

Support Mask

Feature from Res2 + Res3

01 Background for Few-Shot Segmentation

• Implementation

- Divide the dataset into *Cseen* and *Cunseen* (*Chase* and *Cnovel*), *Cseen* \cap *Cunseen* = \emptyset
- One-shot segmentation and k-shot segmentation

One-shot Segmentation:

Query Images

k-shot Segmentation:

Zhuotao Tian¹ Xin Lai¹ Li Jiang² Shu Liu³ Michelle Shu⁴ Hengshuang Zhao^{5,6} Jiaya Jia^{1,3} ¹CUHK ²MPI Informatics ³SmartMore ⁴Cornell University ⁵HKU ⁶MIT

• Limitations of Few-Shot-Seg

- FS-Seg requires support samples to contain classes that exist in query samples.
- FS-Seg only evaluates the novel classes, while test samples in normal semantic segmentation may also contain the base classes.
- Introduce a new benchmark, called Generalized Few-Shot Semantic Segmentation

• Difference between 2 settings

Generalized K-shot Semantic Segmentation Register only one time for all test samples.

• Difference between 2 settings

Generalized K-shot Semantic Segmentation Register only one time for all test samples.

• Difference between 2 settings

• The baseline for GFS-Seg.

•
$$\boldsymbol{P}^{\boldsymbol{n}}$$
 $\boldsymbol{p}^{i} = \frac{1}{K} * \sum_{j=1}^{K} \frac{\sum_{h,w} [\boldsymbol{m}_{j}^{i} \circ \mathcal{F}(\boldsymbol{s}_{j}^{i})]_{h,w}}{\sum_{h,w} [\boldsymbol{m}_{j}^{i}]_{h,w}}, \quad \tilde{\boldsymbol{P}^{n}} \in \mathbb{R}^{N^{n},d}$

• P^b The common semantic segmentation frameworks (*e.g.* FCN, DeepLab, PSPNet) can be decomposed into two parts: feature extractor and classifier. The classifier of size $N^b \times d$ can be seen as N^b base prototypes $P^b \in \mathbb{R}^{N^b, d}$

•
$$P^{all}$$
 $P^{all} \in \mathbb{R}^{N^b+N^n,d}$,

• Framework

- The weights of N^n novel classes are directly set by the averaged novel features.
- Weights of n^b base classes appear in support samples are enriched by SCE with the original weights.
- **DQCE** dynamically enriches the weights of N^b base classes from query samples

• Support Contextual Enrichment (SCE)

 $p^{b,i} = \pmb{\gamma}^{i}_{sup} * \pmb{p}^{b,i}_{cls} + (1 - \pmb{\gamma}^{i}_{sup}) * \pmb{p}^{b,i}_{sup}, \quad i \in \{1,...,n^{b}\},$

• Dynamic Query Contextual Enrichment (DQCE)

 $\boldsymbol{p}_{qry}^{b} = Softmax(\boldsymbol{y}_{qry}^{t}) \times \mathcal{F}(\boldsymbol{q}), \quad \boldsymbol{y}_{qry} \in \mathbb{R}^{h_{q}w_{q} \times N^{b}}$ $\boldsymbol{p}_{dun}^{b,i} = \boldsymbol{\gamma}_{qry}^{i} * \boldsymbol{p}_{cls}^{b,i} + (1 - \boldsymbol{\gamma}_{qry}^{i}) * \boldsymbol{p}_{qry}^{b,i}, \quad i \in \{1, ..., N^{b}\}.$

Final prototypes

$$p_{capl}^{b,i} = p^{b,i} + p_{dyn}^{b,i}, \quad i \in \{1, ..., N^b\}.$$

Generation of γ $P_{feat} P_{cls}^{b}$ $(1-n_{b})$ (n_{b}, C) $(n_{b}, 2C)$ MLP $(n_{b}, 1)$ $Adaptive \gamma$

Why update the prototypes of the base classes?

People during training. If *Sofa* is a novel class and some instances of *Sofa* in support samples appear with *Dog* (*e.g.*, a dog is lying on the sofa), merely mask-pooling in each support sample of *Sofa* to form the novel prototype may result in the base prototype of *Dog* losing the contextual co-occurrence information with *Sofa* and hence yield inferior results. Thus, for GFS-Seg, reasonable utilization of con-

• Results

		1-shot			5-shot	
Methods	Base	Novel	Total	Base	Novel	Total
CANet [58]	8.73	2.42	7.23	9.05	1.52	7.26
PFENet [39]	8.32	2.67	6.97	8.83	1.89	7.18
SCL [58]	8.88	2.44	7.35	9.11	1.83	7.38
PANet [43]	31.88	11.25	26.97	32.95	15.25	28.74
PANet + CAPL	63.06	14.96	51.60	63.81	19.66	53.30
DeepLab-V3 + CAPL	65.71	15.05	53.77	67.01	23.26	56.59
PSPNet + CAPL	65.48	18.85	54.38	66.14	22.41	55.72

			Pasc	al-5 ⁱ	$COCO-20^i$		
Methods	Venue	Backbone	1-Shot	5-Shot	1-Shot	5-Shot	
PANet [43]	ICCV-19	Res-50	48.1	55.7	20.9	29.7	
PFENet [39]	TPAMI-20	Res-50	60.8	61.9	32.1	37.5	
ASGNet [17]	CVPR-21	Res-50	59.3	63.9	34.5	42.5	
SCL [55]	CVPR-21	Res-50	61.8	62.9	-	-	
SAGNN [46]	CVPR-21	Res-50	62.1	62.8	-	-	
RePri [3]	CVPR-21	Res-50	59.1	66.8	34.0	42.1	
CWT [22]	ICCV-21	Res-50	56.4	63.7	32.9	41.3	
MMNet [45]	ICCV-21	Res-50	61.8	63.4	37.5	38.2	
CMN [47]	ICCV-21	Res-50	62.8	63.7	39.3	43.1	
Mining [49]	ICCV-21	Res-50	62.1	66.1	33.9	40.6	
HSNet [23]	ICCV-21	Res-50	64.0	69.5	39.2	46.9	
CAPL (PANet)		Res-50	60.6	66.1	38.0	47.3	
CAPL (PFENet)		Res-50	62.2	<u>67.1</u>	39.8	48.3	
PFENet [39]	TPAMI-20	Res-101	60.1	61.4	32.4	37.4	
SAGNN [46]	CVPR-21	Res-101	-	-	37.2	42.7	
ASGNet [17]	CVPR-21	Res-101	59.3	64.4	-	-	
CWT [22]	ICCV-21	Res-101	58.0	64.7	32.4	42.0	
Mining [49]	ICCV-21	Res-101	62.6	68.8	36.4	44.4	
HSNet [23]	ICCV-21	Res-101	66.2	70.4	41.2	49.5	
CAPL (PFENet)		Res-101	63.6	<u>68.9</u>	42.8	50.4	

Jie Liu^{1*}, Yanqi Bao^{2*}, Guo-Sen Xie^{3,4†}, Huan Xiong⁴, Jan-Jakob Sonke⁵, Efstratios Gavves¹ ¹University of Amsterdam, Netherlands ²Northeastern University, China ⁵The Netherlands Cancer Institute, Netherlands ³Nanjing University of Science and Technology, China ⁴Mohamed bin Zayed University of Artificial Intelligence, UAE

Most existing FSS methods usually cannot well capture the intrinsic object details in the query images that are widely encountered in FSS

DPCN can well capture the intrinsic subtle details. This benefits from dynamic convolution on query features with dynamic kernels generated from the support foreground features.

• Framework

• Support Activation Module (SAM)

$$R_s = \mathcal{W}(x_s^h \otimes M_s) \in \mathbb{R}^{d_h d_w \times C_h \times H_s W_s},$$
$$R_q = \mathcal{W}(x_q^h) \in \mathbb{R}^{d_h d_w \times C_h \times H_q W_q},$$

Window size 3×1

 $R \in 3 \times 1 \times 7 \times 7$

Regional matching map: $Corr \in \mathbb{R}^{d_h d_w \times H_s W_s \times H_q W_q}$

• Dynamic Convolution Module

$$P_{fg} = \mathcal{F}_e(x_s \otimes M_s) \in \mathbb{R}^{N_{fg} \times C},$$

$$p_s = pool_s(P_{fg}), p_{s^2} = pool_{s^2}(p_s).$$

• Results

Mathada	1-shot						5-shot						
ivieulous Backbone	Fold-0	Fold-1	Fold-2	Fold-3	Mean	FB-IoU	Fold-0	Fold-1	Fold-2	Fold-3	Mean	FB-IoU	
OSLSM (BMVC'17) [20]	VGG16	33.6	55.3	40.9	33.5	40.8	61.3	35.9	58.1	42.7	39.1	43.9	61.5
co-FCN (ICLRW'18) [19]	VGG16	36.7	50.6	44.9	32.4	41.1	60.1	37.5	50.0	44.1	33.9	41.4	60.2
AMP-2(ICCV'19) [21]	VGG16	41.9	50.2	46.7	34.7	43.4	61.9	40.3	55.3	49.9	40.1	46.4	62.1
PFENet (TPAMI'20) [25]	VGG16	56.9	68.2	54.4	52.4	58.0	72.0	59.0	69.1	54.8	52.9	59.0	72.3
HSNet (ICCV'21) [17]	VGG16	59.6	65.7	59.6	54.0	59.7	73.4	64.9	69.0	64.1	58.6	64.1	76.6
PFENet (TPAMI'20) [25]	ResNet50	61.7	69.5	55.4	56.3	60.8	73.3	63.1	70.7	55.8	57.9	61.9	73.9
RePRI (CVPR'21) [1]	ResNet50	59.8	68.3	62.1	48.5	59.7	-	64.6	71.4	71.1	59.3	66.6	-
SAGNN (CVPR'21) [30]	ResNet50	64.7	69.6	57.0	57.3	62.1	73.2	64.9	70.0	57.0	59.3	62.8	73.3
SCL (CVPR'21) [35]	ResNet50	63.0	70.0	56.5	57.7	61.8	71.9	64.5	70.9	57.3	58.7	62.9	72.8
MLC (ICCV'21) [32]	ResNet50	59.2	71.2	65.6	52.5	62.1	-	63.5	71.6	71.2	58.1	66.1	-
MMNet (ICCV'21) [29]	ResNet50	62.7	70.2	57.3	57.0	61.8	-	62.2	71.5	57.5	62.4	63.4	-
HSNet (ICCV'21) [17]	ResNet50	64.3	70.7	60.3	60.5	64.0	76.7	70.3	73.2	67.4	67.1	69.5	80.6
Baseline	VGG16	58.4	68.0	58.0	50.9	58.8	71.2	60.7	68.8	60.2	52.2	60.4	74.3
DPCN	VGG16	58.9	69.1	63.2	55.7	61.7	73.7	63.4	70.7	68.1	59.0	65.3	77.2
Baseline	ResNet50	61.1	69.8	58.4	56.3	61.4	71.5	63.7	70.9	58.7	57.4	62.7	73.7
DPCN	ResNet50	65.7	71.6	69.1	60.6	66.7	78.0	70.0	73.2	70.9	65.5	69.9	80.7

Karpal Siza		FR IoU				
Kerner Size	Fold-0	Fold-1	Fold-2	Fold-3	Mean	FB-100
3	65.2	70.4	68.5	59.4	65.9	77.5
5	65.7	71.6	69.1	60.6	66.7	78.0
7	65.5	70.7	69.3	59.0	66.1	77.5
9	65.9	70.8	68.8	59.7	66.3	77.7

SAM	EEM	DCM		ER LOU				
SAM	SAM FEM DOM	DCM	Fold-0	Fold-1	Fold-2	Fold-3	Mean	FB-100
\checkmark	~		63.6	69.7	65.0	59.6	64.5	75.2
	~	~	67.1	71.1	63.2	60.0	65.4	76.0
~		~	63.5	70.8	65.7	58.9	64.7	75.8
~	~	✓	65.7	71.6	69.1	60.6	66.7	78.0

Table 1. Comparison with state-of-the-arts on PASCAL-5^{*i*} dataset under both 1-shot and 5-shot settings. mIoU of each fold, and averaged mIoU & FB-IoU of all folds are reported. Baseline results are achieved by removing three modules (i.e., SAM, FFM, and DCM) in DPCN.

Mathada	Dealthana	1-shot						5-shot					
Methods Backbon	Backbone	Fold-0	Fold-1	Fold-2	Fold-3	Mean	FB-IoU	Fold-0	Fold-1	Fold-2	Fold-3	Mean	FB-IoU
FWB(ICCV'19)[18]	VGG16	18.4	16.7	19.6	25.4	20.0	-	20.9	19.2	21.9	28.4	22.6	-
PFENet(TPAMI'20) [25]	VGG16	33.4	36.0	34.1	32.8	34.1	60.0	35.9	40.7	38.1	36.1	37.7	61.6
SAGNN(CVPR'21) [30]	VGG16	35.0	40.5	37.6	36.0	37.3	61.2	37.2	45.2	40.4	40.0	40.7	63.1
RePRI(CVPR'21) [1]	ResNet50	31.2	38.1	33.3	33.0	34.0	-	38.5	46.2	40.0	43.6	42.1	-
MLC(ICCV'21) [32]	ResNet50	46.8	35.3	26.2	27.1	33.9	-	54.1	41.2	34.1	33.1	40.6	-
MMNet(ICCV'21) [29]	ResNet50	34.9	41.0	37.2	37.0	37.5	-	37.0	40.3	39.3	36.0	38.2	-
HSNet(ICCV'21)[17]	ResNet50	36.3	43.1	38.7	38.7	39.2	68.2	43.3	51.3	48.2	45.0	46.9	70.7
SAGNN(CVPR'21) [30]	ResNet101	36.1	41.0	38.2	33.5	37.2	60.9	40.9	48.3	42.6	38.9	42.7	63.4
SCL(CVPR'21) [35]	ResNet101	36.4	38.6	37.5	35.4	37.0	-	38.9	40.5	41.5	38.7	39.9	-
Baseline	VGG16	32.1	36.1	35.2	32.3	33.9	60.1	35.0	40.1	37.1	36.5	37.2	61.8
DPCN	VGG16	38.5	43.7	38.2	37.7	39.5	62.5	42.7	51.6	45.7	44.6	46.2	66.1
Baseline	ResNet50	32.3	38.3	34.9	32.5	34.5	57.7	35.0	41.0	37.3	35.5	37.2	59.2
DPCN	ResNet50	42.0	47.0	43.2	39.7	43.0	63.2	46.0	54.9	50.8	47.4	49.8	67.4

Table 2. Comparison with state-of-the-arts on $COCO-20^i$ dataset under both 1-shot and 5-shot settings. mIoU of each fold, and averaged mIoU & FB-IoU of all folds are reported. Baseline results are achieved by removing three modules (i.e., SAM, FFM, and DCM) in DPCN.

Mathada		ED Iall				
Methods	Fold-0	Fold-1	Fold-2	Fold-3	Mean	г Б- ю
CANet	53.5	65.9	51.3	51.9	55.4	66.2
CANet+DCM	64.7	66.8	51.8	51.9	58.8	69.3
PFENet	61.7	69.5	55.4	56.3	60.8	73.3
PFENet+DCM	62.2	69.6	59.2	58.0	62.3	73.5

Table 6. Generalization ability of the proposed DCM.