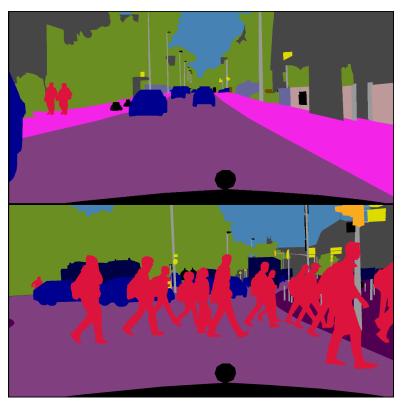
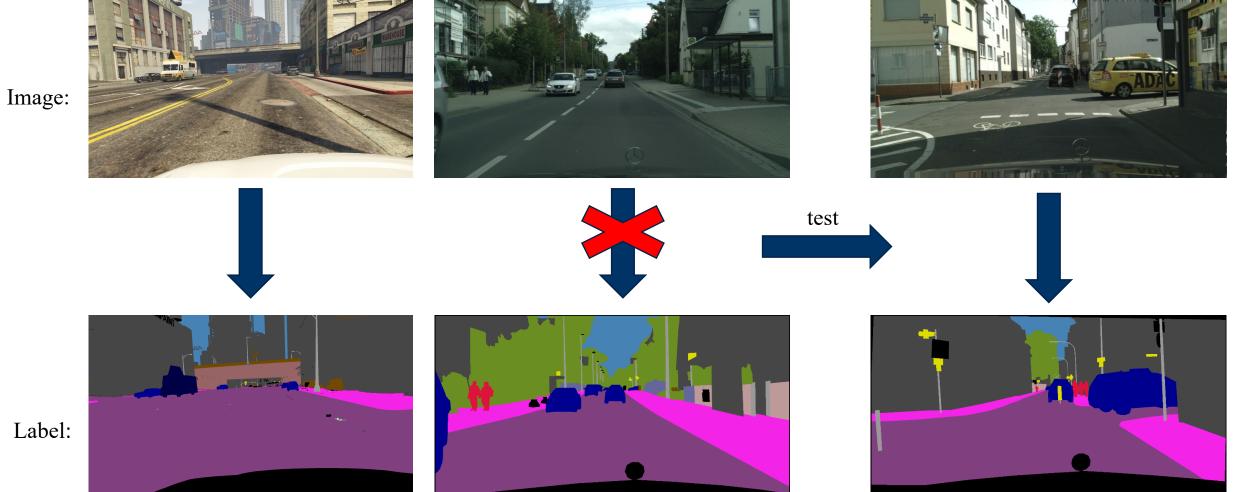
CVPR 2022

Domain Adaptation

Annotations are particularly costly as every pixel has to be labeled



UDA: Unsupervised Domain Adaptation



Domain Adaptation

Undoing the Damage of Label Shift for Cross-domain Semantic Segmentation

Yahao Liu Jinhong Deng Jiale Tao Tong Chu Lixin Duan Wen Li^{*} School of Computer Science and Engineering & Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China

{lyhaolive, jhdeng1997, jialetao.std, uestcchutong, lxduan, liwenbnu }@gmail.com

• CVPR 2022

Motivation

Ignore the label shift problem, which commonly exists in CDSS tasks, since the label distribution is often different across domains.

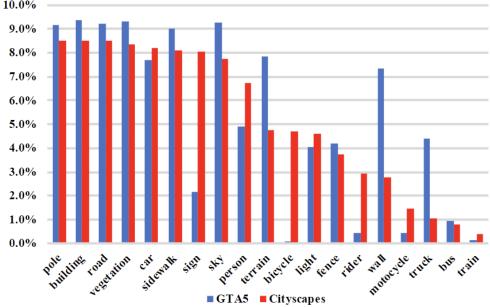


Figure 1. Label distribution in GTA5 and Cityscapes. There is an obvious label shift problem between the two datasets. For example, the frequency of "rider" in GTA5 is much less than that in Cityscapes while that of "wall" is opposite (Best viewed in color).

Contribution

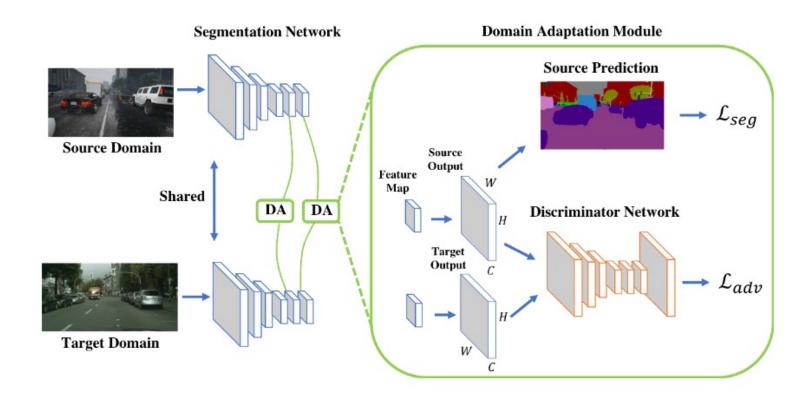
- propose to address the label shift issue for CDSS tasks in a more realistic scenario (i.e., the conditional distributions are different across domains) and reveal that the classifier bias is the critical factor leading to poor generalization on the target domain
- propose two simple yet effective methods to rectify the classifier bias from source to target by remolding the classifier predictions after explicitly aligning the conditional distribution

- Motivation
- $G = C \circ F$

•
$$G(x) = C(F(x)) = p(Y|F(x))$$

- Bayes' theorem : $C(F(x)) = P(Y|F(x)) = \frac{P(F(x)|Y)P(Y)}{P(F(x))}$
- $C_s(F(x)) \propto P_s(F_s(x)|Y)P_s(Y)$
- $C_t(F(x)) \propto P_t(F_t(x)|Y)P_t(Y)$
- $C_t(F(x)) \propto \frac{C_s(F(x))P_t(Y)}{P_s(Y)}$

• Conditional Distribution Alignment



$$\min_{F,C} \mathcal{L}_{seg} + \lambda_{adv} \mathcal{L}_{adv},$$

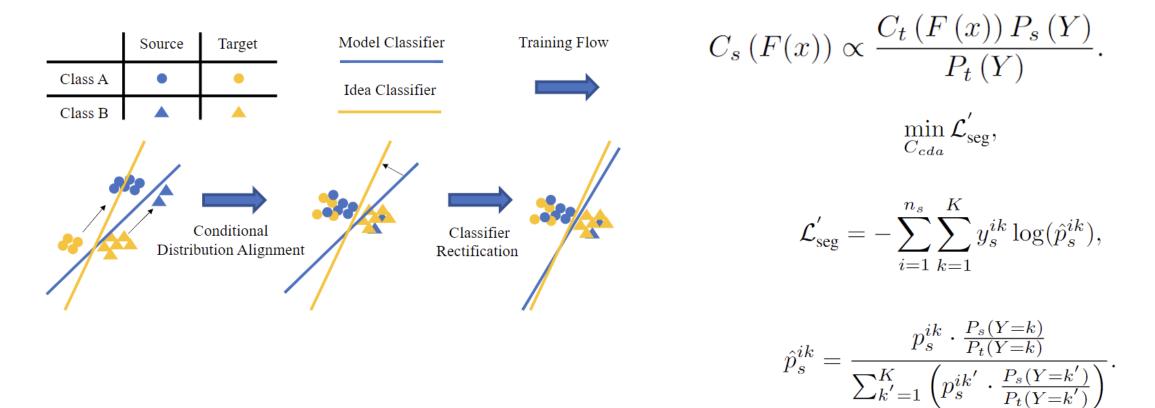
$$\min_D \mathcal{L}_D,$$

$$\mathcal{L}_{seg} = -\sum_{i=1}^{N_s} \sum_{k=1}^{K} y_s^{ik} \log\left(C\left(F\left(x_s^i\right)\right)\right),$$

$$\mathcal{L}_{adv} = -\sum_{j=1}^{N_t} \sum_{k=1}^K a_t^{jk} \log D\left(d = 0, y = k \mid F(x_t^j)\right)$$

$$\mathcal{L}_D = -\sum_{i=1}^{N_s} \sum_{k=1}^K a_s^{ik} \log D(d=0, y=k \mid F(x_s^i)) - \sum_{j=1}^{N_t} \sum_{k=1}^K a_t^{jk} \log D(d=1, y=k \mid F(x_t^j)),$$

• Classifier Rectification(CR)



• Inference Adjustment (IA)

$$y_{IA}^{i} = \operatorname{argmax}_{k} \left(p_{t}^{i} \cdot \frac{P_{t}(Y)}{P_{s}(Y)} \right).$$

- Label Distribution Estimation
- we denote the count of the image-level label of i-th source image as $I_s^i(k)$

$$I_{s}^{i}(k) = \mathbb{1}\left[\left(\sum_{h=1}^{H}\sum_{w=1}^{W}\mathbb{1}\left[y_{s}^{i}(h,w) = = k\right]\right) > n_{s}\right]$$
$$P_{s}(\hat{Y} = k) = \frac{\sum_{i=1}^{N_{s}}I_{s}^{i}(k)}{\sum_{k=1}^{K}\sum_{i=1}^{N_{s}}I_{s}^{i}(k)}.$$

$$p_i(k) = \log\left[\frac{1}{HW}\sum_{h=1}^{H}\sum_{w=1}^{W}\exp\left(G_{cda}\left(X_t^i\right)(h,w,k)\right)\right],\tag{17}$$

$$I_t^i(k) = \mathbb{1}[p_i(k) > p_{pix}(k)],$$
 (18)

$$P_t(\hat{Y} = k) = \frac{\sum_{i=1}^{N_t} I_t^i(k)}{\sum_{k=1}^{K} \sum_{i=1}^{N_t} I_t^i(k)}.$$
 (19)

• Experimental Results

• GTA5:

Method	road	sidewalk	building	wall	fence	pole	light	sign	vege.	terrain	sky	person	rider	car	truck	bus	train	motor	bike	mIoU
Source	65.0	16.1	68.7	18.6	16.8	21.3	31.4	11.2	83.0	22.0	78.0	54.4	33.8	73.9	12.7	30.7	13.7	28.1	19.7	36.8
AdaptSegNet [42]	86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
AdvEnt [43]	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5
CLAN [29]	87.0	27.1	79.6	27.3	23.3	28.3	35.5	24.2	83.6	27.4	74.2	58.6	28.0	76.2	33.1	36.7	6.7	31.9	31.4	43.2
FADA [44]	87.0	37.6	83.3	36.9	25.3	30.9	35.3	21.0	82.7	36.8	83.1	58.3	34.1	83.3	31.5	35.0	24.4	34.3	32.0	46.9
Our IA	87.9	37.0	83.3	37.0	25.0	31.0	35.7	24.9	83.4	38.9	85.7	58.0	35.4	83.6	35.3	36.3	30.7	32.5	45.2	48.8
Our CR	89.1	34.3	83.6	38.3	27.5	28.9	34.7	17.6	84.2	41.0	85.1	57.8	33.7	85.1	38.5	41.3	30.7	31.1	48.0	49.0
FDA [47]	92.5	53.3	82.4	26.5	27.6	36.4	40.6	38.9	82.3	39.8	78.0	62.6	34.4	84.9	34.1	53.1	16.9	27.7	46.4	50.5
DACS [41]	89.9	39.7	87.9	30.7	39.5	38.5	46.4	52.8	88.0	44.0	88.8	67.2	35.8	84.5	45.7	50.2	0.0	27.3	34.0	52.1
CRST [55]	91.0	55.4	80.0	33.7	21.4	37.3	32.9	24.5	85.0	34.1	80.8	57.7	24.6	84.1	27.8	30.1	26.9	26.0	42.3	47.1
FADA+SD [44]	92.5	47.5	85.1	37.6	32.8	33.4	33.8	18.4	85.3	37.7	83.5	63.2	39.7	87.5	32.9	47.8	1.6	34.9	39.5	49.2
IAST [32]	93.8	57.8	85.1	39.5	26.7	26.2	43.1	34.7	84.9	32.9	88.0	62.6	29.0	87.3	39.2	49.6	23.2	34.7	39.6	51.5
CLS [25]+IAST	94.7	60.1	85.6	39.5	24.4	44.1	39.5	20.6	88.7	38.7	80.3	67.2	35.1	86.5	37.0	45.4	39.0	37.9	46.2	53.0
Ours+SD	91.2	45.1	85.5	41.0	30.8	36.0	41.1	19.3	87.4	45.7	88.7	64.4	37.8	87.5	41.8	51.2	11.2	41.6	54.9	52.7
Ours+IAST	94.1	61.3	86.5	39.3	33.5	38.3	48.9	38.5	87.2	44.2	89.3	63.4	38.3	86.2	30.5	43.0	33.6	43.1	54.8	55.5
R-MRNet [52]	90.4	31.2	85.1	36.9	25.6	37.5	48.8	48.5	85.3	34.8	81.1	64.4	36.8	86.3	34.9	52.2	1.7	29.0	44.6	50.3
ProDA [49]	87.8	56.0	79.7	46.3	44.8	45.6	53.5	53.5	88.6	45.2	82.1	70.7	39.2	88.8	45.5	59.4	1.0	48.9	56.4	57.5
Ours+ProDA	92.9	52.7	87.2	39.4	41.3	43.9	55.0	52.9	89.3	48.2	91.2	71.4	36.0	90.2	67.9	59.8	0.0	48.5	59.3	59.3

• Experimental Results

• SYNTHIA :

Method	road	sidewalk	building	wall*	fence*	pole*	light	sign	vege.	sky	person	rider	car	pus	motor	bike	mIoU*	' mIoU
Source	55.6	23.8	74.6	9.2	0.2	24.4	6.1	12.1	74.8	79.0	55.3	19.1	39.6	23.3	13.7	25.0	38.6	33.5
AdaptSegNet [42]	81.7	39.1	78.4	11.1	0.3	25.8	6.8	9.0	79.1	80.8	54.8	21.0	66.8	34.7	13.8	29.9	45.8	39.6
AdvEnt [43]	85.6	42.2	79.7	8.7	0.4	25.9	5.4	8.1	80.4	84.1	57.9	23.8	73.3	36.4	14.2	33.0	48.0	41.2
CLAN [29]	81.3	37.0	80.1	-	-	-	16.1	13.7	78.2	81.5	53.4	21.2	73.0	32.9	22.6	30.7	47.8	-
FADA [44]	81.3	35.1	80.8	9.6	0.2	26.8	9.1	17.8	82.4	81.5	49.9	18.8	78.9	33.3	15.3	33.7	47.5	40.9
Our IA	82.2	35.6	80.8	9.0	0.2	27.1	12.4	21.3	82.3	80.7	54.4	21.2	80.0	36.6	14.0	42.2	49.5	42.5
Our CR	83.6	36.2	80.9	10.3	0.1	27.4	17.6	22.8	81.5	81.2	54.6	20.1	80.3	38.1	11.1	42.9	50.1	43.0
FDA [47]	79.3	35.0	73.2	-	-	-	19.9	24.0	61.7	82.6	61.4	31.1	83.9	40.8	38.4	51.1	52.5	-
DACS [41]	80.6	25.1	81.9	21.5	2.9	37.2	22.7	24.0	83.7	90.8	67.6	38.3	82.9	38.9	28.5	47.6	54.8	48.3
CRST [55]	67.7	32.2	73.9	10.7	1.6	37.4	22.2	31.2	80.8	80.5	60.8	29.1	82.8	25.0	19.4	45.3	50.1	43.8
FADA+SD [44]	84.5	40.1	83.1	4.8	0.0	34.3	20.1	27.2	84.8	84.0	53.5	22.6	85.4	43.7	26.8	27.8	52.5	45.2
IAST [32]	81.9	41.5	83.3	17.7	4.6	32.3	30.9	28.8	83.4	85.0	65.5	30.8	86.5	38.2	33.1	52.7	57.0	49.8
Ours+SD	86.9	42.9	83.3	9.9	0.0	35.3	17.2	26.0	85.4	83.0	62.0	18.5	86.7	51.4	12.8	50.0	54.3	47.0
Ours+IAST	84.6	43.0	84.1	38.1	0.5	36.7	32.9	36.2	83.1	81.9	65.6	33.4	80.5	34.5	38.2	53.1	57.8	51.6
R-MRNet [52]	87.6	41.9	83.1	14.7	1.7	36.2	31.3	19.9	81.6	80.6	63.0	21.8	86.2	40.7	23.6	53.1	54.9	47.9
ProDA [49]	87.8	45.7	84.6	37.1	0.6	44.0	54.6	37.0	88.1	84.4	74.2	24.3	88.2	51.1	40.5	45.6	62.0	55.5
Ours+ProDA	82.5	37.2	81.1	23.8	0.0	45.7	57.2	47.6	87.7	85.8	74.1	28.6	88.4	66.0	47.0	55.3	64.5	56.7

• Experimental Results

methods	mIoU	Δ
Baseline+SD [44]	49.2	
Ours+SD	52.7	3.5↑
IAST [32]	51.5	
Baseline+IAST	53.2	
Ours+IAST	55.5	$2.3\uparrow$
ProDA [49] stage1	53.7	
Baseline+ProDA stage1	55.1	
Ours+ProDA stage1	57.6	$2.5\uparrow$
ProDA	57.5	
Ours+ProDA	59.3	$1.8\uparrow$

methods	classifier	mIoU	Δ
FADA [44]	Original ASPP	46.9	
Our IA	Original ASPP	48.8	$1.9\uparrow$
Our CR	Original ASPP	49.0	$2.1\uparrow$
FADA [44]	Modified ASPP	47.6	
Our IA	Modified ASPP	49.2	$1.6\uparrow$
Our CR	Modified ASPP	48.7	1.1↑

Domain Adaptation

Class-Balanced Pixel-Level Self-Labeling for Domain Adaptive Semantic Segmentation

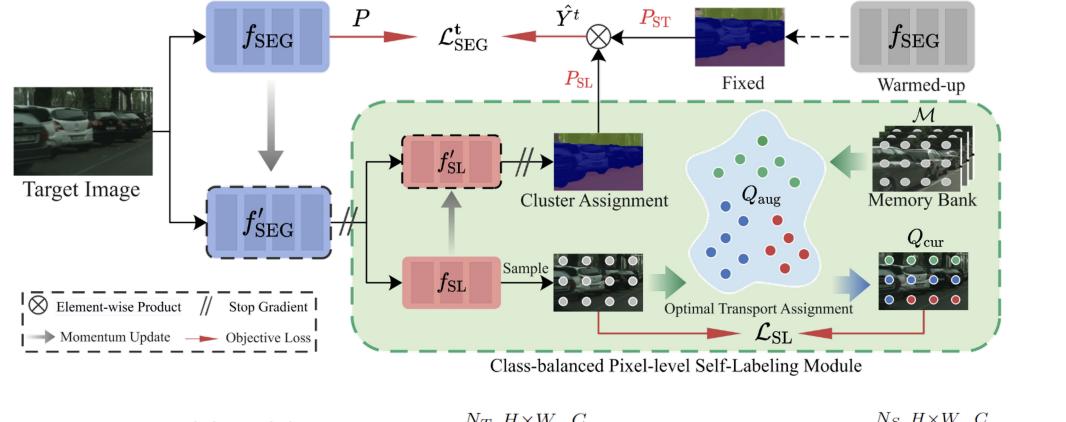
Ruihuang Li¹, Shuai Li¹, Chenhang He¹, Yabin Zhang¹, Xu Jia², Lei Zhang^{1*} ¹The Hong Kong Polytechnic University, ²Dalian University of Technology {csrhli, csshuaili, csche, csybzhang, cslzhang}@comp.polyu.edu.hk,xjia@dlut.edu.cn

- CVPR 2022
- Motivation

pixel-wise cluster assignments could reveal the intrinsic distributions of pixels in target domain, and provide useful supervision for model training

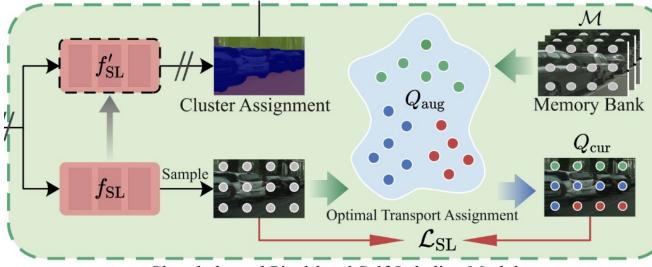
- A pixel-level self-labeling module is developed for domain adaptive semantic segmentation. We cluster pixels in an online fashion and simultaneously rectify pseudo labels based on the resulting cluster assignments.
- propose two simple yet effective methods to rectify the classifier bias from source to target by remolding the classifier predictions after explicitly aligning the conditional distribution

• Overview of the Proposed Model



$$\hat{Y}_{n,i}^{t,(c)} = \begin{cases} 1, & \text{if } c = argmax(P_{\text{SL},n,i}^{(c*)} \cdot P_{\text{ST},n,i}^{(c*)}) \\ 0, & \text{otherwise} \end{cases}, \ \mathcal{L}_{\text{SEG}}^{t} = -\sum_{n=1}^{N_T} \sum_{i=1}^{H \times W} \sum_{c=1}^{C} \hat{Y}_{n,i}^{t,(c)} \log P_{n,i}^{(c)}. \ \mathcal{L}_{\text{SEG}}^{s} = -\sum_{n=1}^{N_S} \sum_{i=1}^{H \times W} \sum_{c=1}^{C} Y_{n,i}^{s,(c)} \log P_{n,i}^{(c)}. \end{cases}$$

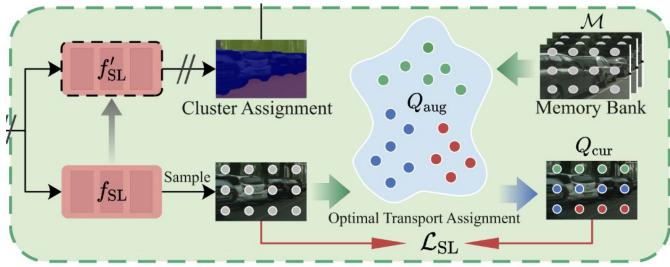
• Online Pixel-Level Self-Labeling



Class-balanced Pixel-level Self-Labeling Module

 $p_m^{(c)} = \frac{\exp(\frac{1}{\tau} f_{\rm SL}^{(c)}(z_m))}{\sum \exp(\frac{1}{\tau} f_{\rm CT}^{(c')}(z_m))}, \ c \in \{1, \cdots, C\},\$ $\mathcal{L}_{\rm SL} = -\frac{1}{M} \sum_{m=1}^{M} \sum_{m=1}^{C} q_m^{(c)} \log p_m^{(c)} \quad s.t. \ Q \in \mathbb{Q},$ with $\mathbb{Q} := \{ Q \in \mathbb{R}^{C \times M}_+ | Q \mathbf{1}_M = r, Q^T \mathbf{1}_C = h \}.$ $Q^* = \operatorname{diag}(\alpha) \exp(\frac{f_{\mathrm{SL}}(Z)}{\alpha}) \operatorname{diag}(\beta),$ Weight Initialization $\bar{\mathbf{z}}_{c} = \frac{1}{|\Gamma_{c}|} \sum_{i=1}^{N_{T}} \sum_{i=1}^{H \times W} Y_{\mathrm{ST},n,i}^{(c)} \cdot z_{n,i},$

• Class-Balanced Sampling.



Class-balanced Pixel-level Self-Labeling Module

 $\delta_n^{(c)} = \frac{1}{H \times W} \sum_{i}^{H \times W} \hat{Y}_{n,i}^{t,(c)},$ $M_c = \left\lfloor M \times \delta_n^{(c)} \right\rfloor$

Distribution Alignment: simultaneously optimizing Q and \hat{P} in Eq. 5 may lead to degenerated results that all data points are trivially assigned to a single cluster.

$$\begin{split} \delta_{pseudo}^{(c)}|_{0} &= \frac{1}{N_{T} \times H \times W} \sum_{n}^{N_{T}} \sum_{i}^{H \times W} Y_{\mathrm{ST},n,i}^{t,(c)}.\\ \delta_{pseudo}^{(c)}|_{k} &= \alpha \delta_{pseudo}^{(c)}|_{k-1} + (1-\alpha) \delta_{n}^{(c)}.\\ r &= \delta_{pseudo}, \quad h = \frac{1}{M} \mathbf{1}_{M}. \end{split}$$

- Experimental Results
- GTA5:

Method	road	sideway	building	wall	fence	pole	light	sign	vege	terrace	sky	person	rider	car	truck	snq	train	motor	bike	mIoU
AdaptSeg [39]	86.5	25.9	79.8	22.1	20.0	23.6	33.1	21.8	81.8	25.9	75.9	57.3	26.2	76.3	29.8	32.1	7.2	29.5	32.5	41.4
CyCADA [17]	86.7	35.6	80.1	19.8	17.5	38.0	39.9	41.5	82.7	27.9	73.6	64.9	19.0	65.0	12.0	28.6	4.5	31.1	42.0	42.7
ADVENT [41]	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5
CBST [56]	91.8	53.5	80.5	32.7	21.0	34.0	28.9	20.4	83.9	34.2	80.9	53.1	24.0	82.7	30.3	35.9	16.0	25.9	42.8	45.9
FADA [42]	92.5	47.5	85.1	37.6	32.8	33.4	33.8	18.4	85.3	37.7	83.5	63.2	39.7	87.5	32.9	47.8	1.6	34.9	39.5	49.2
CAG_UDA [51]	90.4	51.6	83.8	34.2	27.8	38.4	25.3	48.4	85.4	38.2	78.1	58.6	34.6	84.7	21.9	42.7	41.1	29.3	37.2	50.2
FDA [48]	92.5	53.3	82.4	26.5	27.6	36.4	40.6	38.9	82.3	39.8	78.0	62.6	34.4	84.9	34.1	53.1	16.9	27.7	46.4	50.5
PIT [30]	87.5	43.4	78.8	31.2	30.2	36.3	39.3	42.0	79.2	37.1	79.3	65.4	37.5	83.2	46.0	45.6	25.7	23.5	49.9	50.6
IAST [31]	93.8	57.8	85.1	39.5	26.7	26.2	43.1	34.7	84.9	32.9	88.0	62.6	29.0	87.3	39.2	49.6	23.2	34.7	39.6	51.5
ProDA [50]	91.5	52.4	82.9	42.0	35.7	40.0	44.4	43.3	87.0	43.8	79.5	66.5	31.4	86.7	41.1	52.5	0.0	45.4	53.8	53.7
CPSL (ours)	91.7	52.9	83.6	43.0	32.3	43.7	51.3	42.8	85.4	37.6	81.1	69.5	30.0	88.1	44.1	59.9	24.9	47.2	48.4	55.7
ProDA+distill	87.8	56.0	79.7	46.3	44.8	45.6	53.5	53.5	88.6	45.2	82.1	70.7	39.2	88.8	45.5	59.4	1.0	48.9	56.4	57.5
CPSL+distill	92.3	59.9	84.9	45.7	29.7	52.8	61.5	59.5	87.9	41.5	85.0	73.0	35.5	90.4	48.7	73.9	26.3	53.8	53.9	60.8

- Experimental Results
- SYNTHIA:

Method	road	sideway	building	wall	fence	pole	light	sign	vege	sky	person	rider	car	bus	motor	bike	mIoU ¹³	mIoU ¹⁶
AdaptSeg [39]	79.2	37.2	78.8	-	-	-	9.9	10.5	78.2	80.5	53.5	19.6	67.0	29.5	21.6	31.3	45.9	-
ADVENT [41]	85.6	42.2	79.7	8.7	0.4	25.9	5.4	8.1	80.4	84.1	57.9	23.8	73.3	36.4	14.2	33.0	48.0	41.2
CBST [56]	68.0	29.9	76.3	10.8	1.4	33.9	22.8	29.5	77.6	78.3	60.6	28.3	81.6	23.5	18.8	39.8	48.9	42.6
CAG_UDA [51]	84.7	40.8	81.7	7.8	0.0	35.1	13.3	22.7	84.5	77.6	64.2	27.8	80.9	19.7	22.7	48.3	51.5	44.5
PIT [30]	83.1	27.6	81.5	8.9	0.3	21.8	26.4	33.8	76.4	78.8	64.2	27.6	79.6	31.2	31.0	31.3	51.8	44.0
FADA [42]	84.5	40.1	83.1	4.8	0.0	34.3	20.1	27.2	84.8	84.0	53.5	22.6	85.4	43.7	26.8	27.8	52.5	45.2
FDA [48]	79.3	35.0	73.2	-	-	-	19.9	24.0	61.7	82.6	61.4	31.1	83.9	40.8	38.4	51.1	52.5	-
PyCDA [26]	75.5	30.9	83.3	20.8	0.7	32.7	27.3	33.5	84.7	85.0	64.1	25.4	85.0	45.2	21.2	32.0	53.3	46.7
IAST [31]	81.9	41.5	83.3	17.7	4.6	32.3	30.9	28.8	83.4	85.0	65.5	30.8	86.5	38.2	33.1	52.7	57.0	49.8
SAC [1]	89.3	47.2	85.5	26.5	1.3	43.0	45.5	32.0	87.1	89.3	63.6	25.4	86.9	35.6	30.4	53.0	59.3	52.6
ProDA [50]	87.1	44.0	83.2	26.9	0.7	42.0	45.8	34.2	86.7	81.3	68.4	22.1	87.7	50.0	31.4	38.6	58.5	51.9
CPSL (ours)	87.3	44.4	83.8	25.0	0.4	42.9	47.5	32.4	86.5	83.3	69.6	29.1	89.4	52.1	42.6	54.1	61.7	54.4
ProDA+distill CPSL+distill	87.8 87.2	45.7 43.9	84.6 85.5	37.1 33.6	0.6 0.3	44.0 47.7	54.6 57.4	37.0 37.2	88.1 87.8	84.4 88.5	74.2 79.0	24.3 32.0	88.2 90.6	51.1 49.4	40.5 50.8	45.6 59.8	62.0 65.3	55.5 57.9

• Experimental Results

Configuration	mIoU	Δ	# samples	mIol
w/o SL	47.8	-7.9	64	54.9
w/o CB	51.8	-3.9	128	55.3
w/o ST	39.4	-16.3	256	55.5
w/o Init	49.9	-5.8	512	
w/o Aug	54.2	-1.5		55.7
w/o Mom	54.6	-1.1	1024	54.3
CPSL	55.7	-	2048	53.4

Domain Adaptation

Towards Fewer Annotations: Active Learning via Region Impurity and Prediction Uncertainty for Domain Adaptive Semantic Segmentation

Binhui Xie¹ Longhui Yuan¹ Shuang Li^{1™} Chi Harold Liu¹ Xinjing Cheng^{2,3} ¹School of Computer Science and Technology, Beijing Institute of Technology ²School of Software, BNRist, Tsinghua University ³Inceptio Technology {binhuixie,longhuiyuan,shuangli,chiliu}@bit.edu.cn cnorbot@gmail.com **01** Towards Fewer Annotations: Active Learning via Region Impurity and Prediction Uncertainty for Domain Adaptive Semantic Segmentation

- CVPR 2022
- Motivation

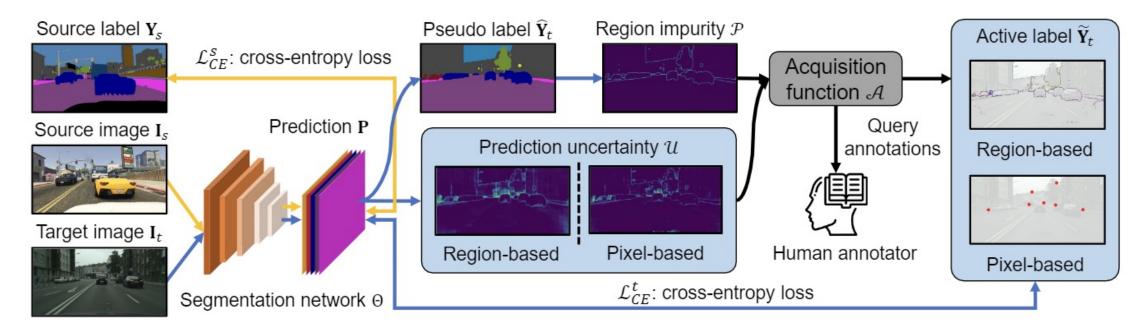
(c) Point-based selection (2.2%) (d) Region-based selection (2.2%)

Figure 1. Illustration of different selection strategies. **Imagebased selection** (e.g., MADA [41]) picks a few target samples and label the entire image, which is probably inefficient. **Point-based selection** (e.g., LabOR [54]) chooses scarce points about which the model is uncertain, while uncertainty estimation at point level is prone to lump pixels that come from particular categories. **Our region-based selection** asks for more annotations of regions with more categories as well as object boundaries in an effective way.

1 Towards Fewer Annotations: Active Learning via Region Impurity and Prediction Uncertainty for Domain Adaptive Semantic Segmentation • Contribution

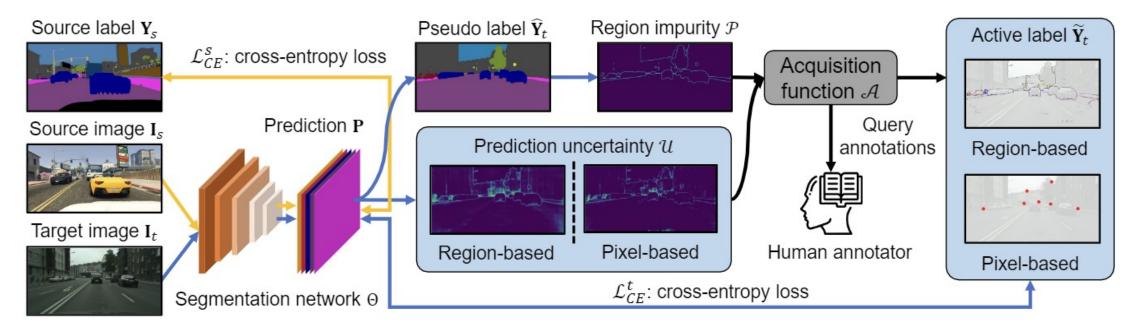
- benchmark the performance of prior methods for active domain adaptation regarding semantic segmentation and uncover that methods using image-based or point-based selection strategies are not effective
- propose a region-based acquisition strategy for domain adaptive semantic segmentation, termed RIPU, that utilizes region impurity and prediction uncertainty to identify image regions that are both diverse in spatial adjacency and uncertain in prediction output

• Overview of the Proposed Model



- Region Generation: k-square-neighbors $\mathcal{N}_k(i,j) = \{(u,v) \mid |u-i| \le k, |v-j| \le k\}$.
- **Region Impurity:** $\mathcal{N}_k^c(i,j) = \{(u,v) \in \mathcal{N}_k(i,j) \mid \widehat{\mathbf{Y}}_t^{(u,v)} = c\}$. $\mathcal{P}^{(i,j)} = -\sum_{i=1}^C \frac{|\mathcal{N}_k^c(i,j)|}{|\mathcal{N}_k(i,j)|} \log \frac{|\mathcal{N}_k^c(i,j)|}{|\mathcal{N}_k(i,j)|}$,
- **Prediction Uncertainty:** $\mathcal{U}^{(i,j)} = \frac{1}{|\mathcal{N}_k(i,j)|} \sum_{(u,v)\in\mathcal{N}_k(i,j)} \mathcal{H}^{(u,v)}$ $\mathcal{A}(\mathbf{I}_t;\Theta^n) = \mathcal{U}\odot\mathcal{P},$

• Overview of the Proposed Model



$$\begin{split} \mathcal{L}_{sup} &= \mathcal{L}_{CE}^{s}(\mathbf{I}_{s}, \mathbf{Y}_{s}) + \mathcal{L}_{CE}^{t}(\mathbf{I}_{t}, \widetilde{\mathbf{Y}}_{t}), \\ \mathcal{L}_{cr}^{s} &= \frac{1}{|\mathbf{I}_{s}|} \sum_{(i,j) \in \mathbf{I}_{s}} \left\| \mathbf{P}^{(i,j)} - \overline{\mathbf{P}}^{(i,j)} \right\|_{1} \\ \pi(\mathbf{P}_{t}^{(i,j,c)}) &= \begin{cases} 1 & \text{if } \mathbf{P}_{t}^{(i,j,c)} < \tau , \\ 0 & \text{otherwise}, \end{cases} \quad \mathcal{L}_{nl}^{t} = \frac{-1}{\Lambda(\mathbf{I}_{t})} \sum_{(i,j) \in \mathbf{I}_{t}} \sum_{c=1}^{C} \pi(\mathbf{P}_{t}^{(i,j,c)}) \log(1 - \mathbf{P}_{t}^{(i,j,c)}), \end{cases}$$

• Experimental Results: GTAV----Cityscapes

Method	Budget	^{DBO1}	side.	buil	llem	fence	Pole	light	Sien	Coo.	len;	S.	Pers.	tider.	c_{dr}	truck	b_{llS}	train	thotor	bite	mIoU
Source Only	-	75.8	16.8	77.2	12.5	21.0	25.5	30.1	20.1	81.3	24.6	70.3	53.8	26.4	49.9	17.2	25.9	6.5	25.3	36.0	36.6
CBST [83]	-	91.8	53.5	80.5	32.7	21.0	34.0	28.9	20.4	83.9	34.2	80.9	53.1	24.0	82.7	30.3	35.9	16.0	25.9	42.8	45.9
MRKLD [84]	-	91.0	55.4	80.0	33.7	21.4	37.3	32.9	24.5	85.0	34.1	80.8	57.7	24.6	84.1	27.8	30.1	26.9	26.0	42.3	47.1
Seg-Uncertainty [82]	-	90.4	31.2	85.1	36.9	25.6	37.5	48.8	48.5	85.3	34.8	81.1	64.4	36.8	86.3	34.9	52.2	1.7	29.0	44.6	50.3
TPLD [54]	-	94.2	60.5	82.8	36.6	16.6	39.3	29.0	25.5	85.6	44.9	84.4	60.6	27.4	84.1	37.0	47.0	31.2	36.1	50.3	51.2
DPL-Dual [7]	-	92.8	54.4	86.2	41.6	32.7	36.4	49.0	34.0	85.8	41.3	86.0	63.2	34.2	87.2	39.3	44.5	18.7	42.6	43.1	53.3
ProDA [80]	-	87.8	56.0	79.7	46.3	44.8	45.6	53.5	53.5	88.6	45.2	82.1	70.7	39.2	88.8	45.5	59.4	1.0	48.9	56.4	57.5
LabOR [53]	40 pixels	96.1	71.8	88.8	47.0	46.5	42.2	53.1	60.6	89.4	55.1	91.4	70.8	44.7	90.6	56.7	47.9	39.1	47.3	62.7	63.5
Ours (PA)	40 pixels	95.5	69.2	88.2	48.0	46.5	36.9	45.2	55.7	88.5	55.3	90.2	69.2	46.1	91.2	70.7	73.0	58.2	50.1	65.9	65.5
LabOR [53]	2.2%	96.6	77.0	89.6	47.8	50.7	48.0	56.6	63.5	89.5	57.8	91.6	72.0	47.3	91.7	62.1	61.9	48.9	47.9	65.3	66.6
Ours (RA)	2.2%	96.5	74.1	89.7	53.1	51.0	43.8	53.4	62.2	90.0	57.6	92.6	73.0	53.0	92.8	73.8	78.5	62.0	55.6	70.0	69.6
Fully Supervised	100%	96.8	77.5	90.0	53.5	51.5	47.6	55.6	62.9	90.2	58.2	92.3	73.7	52.3	92.4	74.3	77.1	64.5	52.4	70.1	70.2
AADA ^{\$} [60]	5%	92.2	59.9	87.3	36.4	45.7	46.1	50.6	59.5	88.3	44.0	90.2	69.7	38.2	90.0	55.3	45.1	32.0	32.6	62.9	59.3
MADA [#] [40]	5%	95.1	69.8	88.5	43.3	48.7	45.7	53.3	59.2	89.1	46.7	91.5	73.9	50.1	91.2	60.6	56.9	48.4	51.6	68.7	64.9
Ours (RA) [#]	5%	97.0	77.3	90.4	54.6	53.2	47.7	55.9	64.1	90.2	59.2	93.2	75.0	54.8	92.7	73.0	79.7	68.9	55.5	70.3	71.2
Fully Supervised [#]	100%	97.4	77.9	91.1	54.9	53.7	51.9	57.9	64.7	91.1	57.8	93.2	74.7	54.8	93.6	76.4	79.3	67.8	55.6	71.3	71.9

• Experimental Results: SYNTHIA----Cityscapes

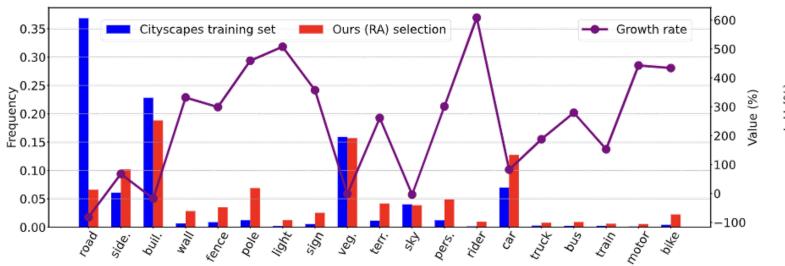
Method	Budget	^f oad	side.	buil	h'all*	fe _{nce*}	pole*	light	^{sien}	NGO .S	S.C.	Pers	nider.	c _{ðr}	bus	notor.	bife	mIoU	mIoU*
Source Only	-	64.3	21.3	73.1	2.4	1.1	31.4	7.0	27.7	63.1	67.6	42.2	19.9	73.1	15.3	10.5	38.9	34.9	40.3
CBST [83]	-	68.0	29.9	76.3	10.8	1.4	33.9	22.8	29.5	77.6	78.3	60.6	28.3	81.6	23.5	18.8	39.8	42.6	48.9
MRKLD [84]	-	67.7	32.2	73.9	10.7	1.6	37.4	22.2	31.2	80.8	80.5	60.8	29.1	82.8	25.0	19.4	45.3	43.8	50.1
DPL-Dual [7]	-	87.5	45.7	82.8	13.3	0.6	33.2	22.0	20.1	83.1	86.0	56.6	21.9	83.1	40.3	29.8	45.7	47.0	54.2
TPLD [54]	-	80.9	44.3	82.2	19.9	0.3	40.6	20.5	30.1	77.2	80.9	60.6	25.5	84.8	41.1	24.7	43.7	47.3	53.5
Seg-Uncertainty [82]	-	87.6	41.9	83.1	14.7	1.7	36.2	31.3	19.9	81.6	80.6	63.0	21.8	86.2	40.7	23.6	53.1	47.9	54.9
ProDA [22]	-	87.8	45.7	84.6	37.1	0.6	44.0	54.6	37.0	88.1	84.4	74.2	24.3	88.2	51.1	40.5	45.6	55.5	62.0
Ours (PA)	40 pixels	95.8	71.9	87.8	39.9	41.5	38.3	47.1	54.2	89.2	90.8	69.9	48.5	91.4	71.5	52.2	67.2	66.1	72.1
Ours (RA)	2.2%	96.8	76.6	89.6	45.0	47.7	45.0	53.0	62.5	90.6	92.7	73.0	52.9	93.1	80.5	52.4	70.1	70.1	75.7
Fully Supervised	100%	96.7	77.8	90.2	40.1	49.8	52.2	58.5	67.6	91.7	93.8	74.9	52.0	92.6	70.5	50.6	70.2	70.6	75.9
AADA [#] [60]	5%	91.3	57.6	86.9	37.6	48.3	45.0	50.4	58.5	88.2	90.3	69.4	37.9	89.9	44.5	32.8	62.5	61.9	66.2
MADA [#] [40]	5%	96.5	74.6	88.8	45.9	43.8	46.7	52.4	60.5	89.7	92.2	74.1	51.2	90.9	60.3	52.4	69.4	68.1	73.3
Ours (RA) [♯]	5%	97.0	78.9	89.9	47.2	50.7	48.5	55.2	63.9	91.1	93.0	74.4	54.1	92.9	79.9	55.3	71.0	71.4	76.7
Fully Supervised [#]	100%	97.5	81.4	90.9	48.5	51.3	53.6	59.4	68.1	91.7	93.4	75.6	51.9	93.2	75.6	52.0	71.2	72.2	77.1

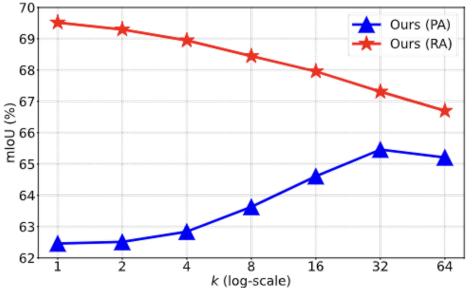
• Experimental Result

	Sel	ection	Trai	ning	GTAV	SYNTHIA
Method	Impurity	Uncertainty	\mathcal{L}^{s}_{cr}	\mathcal{L}_{nl}^t	mIoU	mIoU
RAND:	randomly sel	lecting regions	(2.2%))	63.8	64.7
Fully Su	pervised: all	labeled source	e and ta	rget	70.2	70.6
(a)	\checkmark				68.1	69.0
(b)		\checkmark			66.2	67.9
(c)	\checkmark	\checkmark			68.5	69.2
(d)	\checkmark	\checkmark	\checkmark		69.0	69.7
(e)	\checkmark	\checkmark		\checkmark	69.2	69.8
(f)	\checkmark	\checkmark	\checkmark	\checkmark	69.6	70.1

Table 4. Experiments on different active selection methods.

Method	Budget	mIoU	Budget	mIoU
RAND	40 pixels	60.3	2.2%	63.8
ENT [52]	40 pixels	55.0	2.2%	66.2
SCONF [10]	40 pixels	59.1	2.2%	66.5
Ours	PA, 40 pixels	64.9	RA, 2.2%	68.5





Domain Adaptation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

Lukas Hoyer¹, Dengxin Dai², and Luc Van Gool^{1,3}

¹ ETH Zurich, Switzerland {lhoyer,vangool}@vision.ee.ethz.ch
² MPI for Informatics, Germany ddai@mpi-inf.mpg.de
³ KU Leuven, Belgium

• Previous Work: DAformer

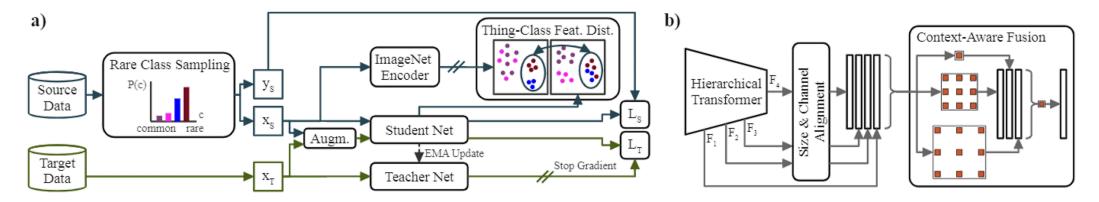


Figure 2. Overview of our UDA framework with Rare Class Sampling, Thing-Class Feature Distance, and DAFormer network.

• arXiv

Motivation

UDA methods are usually more GPU memory intensive than regular supervised training as images from multiple domains, additional networks (e.g teacher model or domain discriminator), and additional losses are required for UDA training

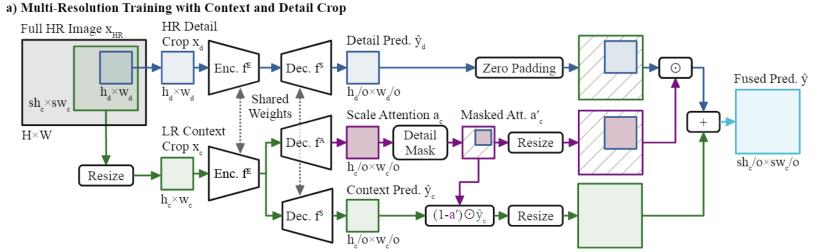
predictions from low-resolution (LR) inputs often fail to recognize small objects such as distant traffic lights and to preserve fine segmentation details such as limbs of distant pedestrians

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation Contribution

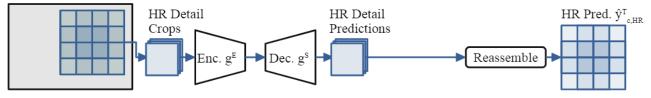
- studying the influence of resolution and crop size
- exploiting HR inputs for adapting small objects and fine segmentation details
- applying multi-resolution training with a learned scale attention for object-scale-dependent adaptation
- proposing a nested context and detail crop for memory-efficient training

Segmentation

Overview of the Proposed Model



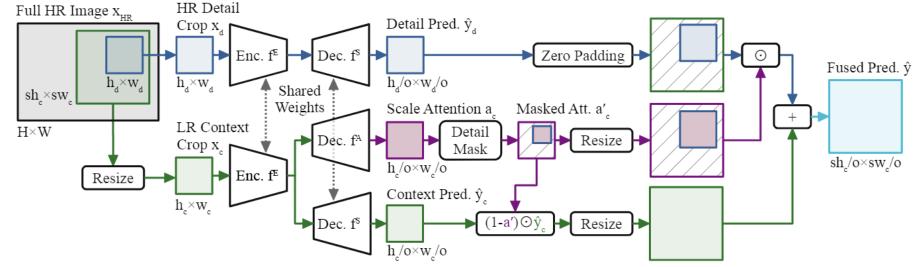
b) Detail Pseudo-Label Inference with Overlapping Sliding Window



Segmentation

Context and Detail Crop

a) Multi-Resolution Training with Context and Detail Crop



LR Context:

$$\begin{split} x_{c,HR} &= x_{HR} \big[b_{c,1} : b_{c,2}, b_{c,3} : b_{c,4} \big] \,, \quad x_c = \zeta \big(x_{c,HR}, 1/s \big) \quad \begin{array}{l} b_{c,1} \sim \mathcal{U} \{ 0, (H-sh_c)/k \} \cdot k \,, \quad b_{c,2} = b_{c,1} + sh_c \,, \\ b_{c,3} \sim \mathcal{U} \{ 0, (W-sw_c)/k \} \cdot k \,, \quad b_{c,4} = b_{c,3} + sw_c \,. \end{array} \end{split}$$
 HR Detail:

$$x_{d} = x_{c,HR}[b_{d,1} : b_{d,2}, b_{d,3} : b_{d,4}],$$

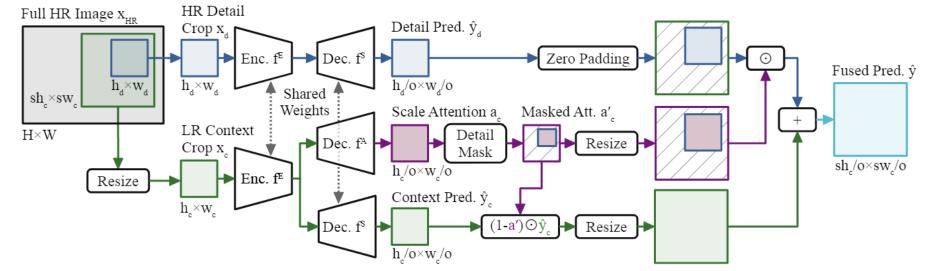
$$b_{d,1} \sim \mathcal{U}\{0, (sh_{c} - h_{d})/k\} \cdot k, \quad b_{d,2} = b_{d,1} + h_{d},$$

$$b_{d,3} \sim \mathcal{U}\{0, (sw_{c} - w_{d})/k\} \cdot k, \quad b_{d,4} = b_{d,3} + w_{d}.$$

Segmentation

Multi-Resolution Fusion

a) Multi-Resolution Training with Context and Detail Crop



scale attention

$$\begin{aligned} a_{c} &= \sigma(f^{S}(f^{A}(x_{c}))) \quad a_{c}' \in \mathbb{R}^{\frac{h_{c}}{o} \times \frac{w_{c}}{o}}, \quad a_{c}'(i,j) = \begin{cases} a_{c}(i,j) & \text{if } \frac{b_{d,1}}{s \cdot o} \leq i < \frac{b_{d,2}}{s \cdot o} \wedge \frac{b_{d,3}}{s \cdot o} \leq j < \frac{b_{d,4}}{s \cdot o} \\ 0 & \text{otherwise} \end{cases} \\ \hat{y}_{d}'(i,j) &= \begin{cases} \hat{y}_{d}(i - \frac{b_{d,1}}{o}, j - \frac{b_{d,3}}{o}) & \text{if } \frac{b_{d,1}}{o} \leq i < \frac{b_{d,2}}{o} \wedge \frac{b_{d,3}}{o} \leq j < \frac{b_{d,4}}{o} \\ 0 & \text{otherwise} \end{cases}. \end{aligned}$$

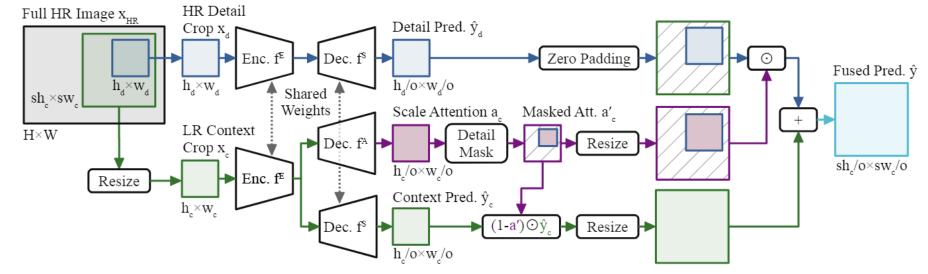
attention-weighted sum:

 $\hat{y}_{c,F} = \zeta((1 - a'_c) \odot \hat{y}_c, s) + \zeta(a'_c, s) \odot \hat{y}'_d.$

Segmentation

Multi-Resolution Fusion

a) Multi-Resolution Training with Context and Detail Crop



Source:

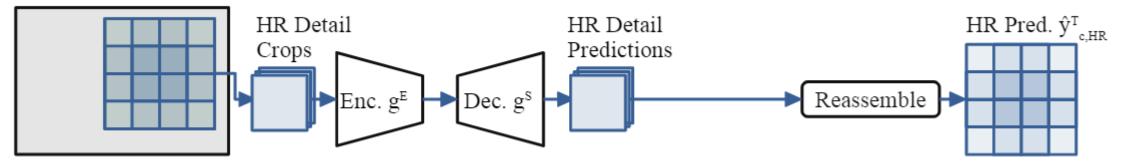
$$\mathcal{L}_{HRDA}^{S} = (1 - \lambda_d) \mathcal{L}_{ce}(\hat{y}_{c,F}^{S}, y_{c,HR}^{S}, 1) + \lambda_d \mathcal{L}_{ce}(\hat{y}_d^{S}, y_d^{S}, 1)$$

Target:

$$\mathcal{L}_{HRDA}^{T} = (1 - \lambda_d) \mathcal{L}_{ce}(\hat{y}_{c,F}^{T}, p_{c,F}^{T}, q_{c,F}^{T}) + \lambda_d \mathcal{L}_{ce}(\hat{y}_d^{T}, p_d^{T}, q_d^{T}).$$

• Pseudo-Label Generation with Overlapping Sliding Window

b) Detail Pseudo-Label Inference with Overlapping Sliding Window



The underlying HRDA prediction $\hat{y}_{c,F}^{T}$ is fused from the LR prediction \hat{y}_{c}^{T} and HR prediction $\hat{y}_{c,HR}^{T}$ using the full scale attention a_{c}^{T}

$$\hat{y}_{c,F}^T = \zeta((1 - a_c^T) \odot \hat{y}_c^T, s) + \zeta(a_c^T, s) \odot \hat{y}_{c,HR}^T.$$

Segmentation

- Experimental Results
- GTA5:

	Road	S.walk	Build.	Wall	Fence	Pole	Tr.Light	Sign	Veget.	Terrain	Sky	Person	Rider	Car	Truck	Bus	Train	M.bike	Bike	mIoU
								GTA	$5 \to \mathrm{Ci}$	tyscapes	3									
CBST [97]	91.8	53.5	80.5	32.7	21.0	34.0	28.9	20.4	83.9	34.2	80.9	53.1	24.0	82.7	30.3	35.9	16.0	25.9	42.8	45.9
DACS $[62]$	89.9	39.7	87.9	30.7	39.5	38.5	46.4	52.8	88.0	44.0	88.8	67.2	35.8	84.5	45.7	50.2	0.0	27.3	34.0	52.1
CorDA [69]	94.7	63.1	87.6	30.7	40.6	40.2	47.8	51.6	87.6	47.0	89.7	66.7	35.9	90.2	48.9	57.5	0.0	39.8	56.0	56.6
BAPA [41]	94.4	61.0	88.0	26.8	39.9	38.3	46.1	55.3	87.8	46.1	89.4	68.8	40.0	90.2	60.4	59.0	0.0	45.1	54.2	57.4
ProDA [84]	87.8	56.0	79.7	46.3	44.8	45.6	53.5	53.5	88.6	45.2	82.1	70.7	39.2	88.8	45.5	59.4	1.0	48.9	56.4	57.5
DAFormer [29]] <u>95.7</u>	<u>70.2</u>	89.4	53.5	<u>48.1</u>	49.6	55.8	59.4	89.9	47.9	92.5	72.2	44.7	<u>92.3</u>	<u>74.5</u>	78.2	65.1	55.9	<u>61.8</u>	<u>68.3</u>
HRDA	96.4	74.4	91.0	61.6	51.5	57.1	63.9	69.3	91.3	48.4	94.2	79.0	52.9	93.9	84.1	85.7	75.9	63.9	67.5	73.8

01 ProCST: Boosting Semantic Segmentation using Progressive Cyclic Style-

Transfer

- Experimental Results
- SYNTHIA :

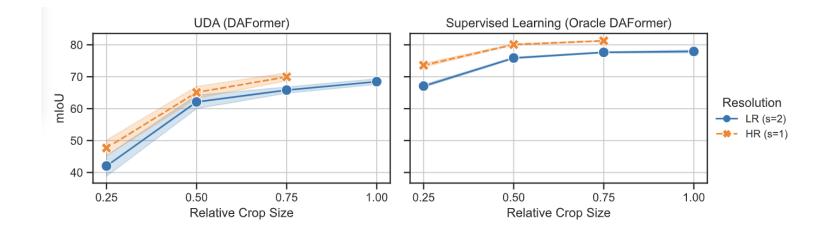
Synthia \rightarrow Cityscapes																			
CBST [97]	68.0	29.9	76.3	10.8	1.4	33.9	22.8	29.5	77.6	_	78.3	60.6	$28.3 \ 81.6$	_	23.5	_	18.8	39.8	42.6
DACS [62]	80.6	25.1	81.9	21.5	2.9	37.2	22.7	24.0	83.7	_	90.8	67.6	$38.3 \ 82.9$	_	38.9	_	28.5	47.6	48.3
BAPA [41]	<u>91.7</u>	53.8	83.9	22.4	0.8	34.9	30.5	42.8	86.6	_	88.2	66.0	$34.1 \ 86.6$	_	51.3	_	29.4	50.5	53.3
CorDA [69]	93.3	61.6	85.3	19.6	$\underline{5.1}$	37.8	36.6	42.8	84.9	_	90.4	69.7	$41.8 \ 85.6$	_	38.4	_	32.6	53.9	55.0
ProDA [84]	87.8	45.7	84.6	37.1	0.6	44.0	54.6	37.0	88.1	_	84.4	74.2	$24.3 \ \underline{88.2}$	_	51.1	_	40.5	45.6	55.5
DAFormer [29]	84.5	40.7	88.4	41.5	6.5	50.0	55.0	54.6	86.0	_	89.8	73.2	48.2 87.2	_	53.2	_	53.9	61.7	<u>60.9</u>
HRDA	85.2	47.7	88.8	49.5	4.8	57.2	65.7	60.9	85.3	_	92.9	79.4	52.8 89.0	—	64.7	—	63.9	64.9	65.8

01 ProCST: Boosting Semantic Segmentation using Progressive Cyclic Style-

Transfer

• Experimental Results

	UDA Method	Network	w/o HRDA	w/ HRDA	Improvement
3	Entropy Min. [65] Adversarial [63] DACS [62] DAFormer [29]	DeepLabV2 [4] DeepLabV2 [4] DeepLabV2 [4] DAFormer [29]	$\begin{array}{c} 44.3 \pm 0.4 \\ 44.2 \pm 0.1 \\ 53.9 \pm 0.6 \\ 68.3 \pm 0.5 \end{array}$	$\begin{array}{c} 46.7 \pm 1.2 \\ 47.1 \pm 1.0 \\ 59.4 \pm 1.2 \\ 73.8 \pm 0.3 \end{array}$	+2.4 +2.9 +5.5 +5.5



ProCST: Boosting Semantic Segmentation using Progressive Cyclic Style-Transfer Experimental Results

Table 3. HRDA context size. XR_a denotes crops with resolution XR ($s_{LR}=2$, $s_{HR}=1$) and relative crop size $a=h/\frac{H_T}{s_{XR}}$.

	Context Crop	Detail Crop	mIoU
1	$LR_{0.5}$	_	62.1 ± 2.1
2	_	$HR_{0.5}$	65.1 ± 1.9
3	$LR_{0.5}$	$\mathrm{HR}_{0.5}$	68.5 ± 0.6
4	$LR_{0.75}$	$\mathrm{HR}_{0.5}$	71.1 ± 1.7
5	$LR_{1.0}$	$\mathrm{HR}_{0.5}$	73.8 ± 0.3

Table 4. HRDA detail size. XR_a denotes crops with resolution XR ($s_{LR}=2, s_{HR}=1$) and relative crop size $a=h/\frac{H_T}{s_{XR}}$.

	Context Crop	Detail Crop	mIoU
$2 \\ 3 \\ 4$	$LR_{1.0}$ - $LR_{1.0}$ $LR_{1.0}$ $LR_{1.0}$	$ HR_{0.25}$ $HR_{0.25}$ $HR_{0.375}$ $HR_{0.5}$	$\begin{array}{c} 68.5 \pm 0.9 \\ 47.7 \pm 2.4 \\ 70.6 \pm 0.7 \\ 71.7 \pm 0.4 \\ 73.8 \pm 0.3 \end{array}$

Table 5. Comparison of HRDA with naive HR crops that have a comparable GPU memory footprint $(HR_{0.75})$.

Context	Detail	Mem.	mIoU
$_{ m LR_{0.75}}^{ m -}$	$\begin{array}{c} \mathrm{HR}_{0.75} \\ \mathrm{HR}_{0.375} \\ \mathrm{HR}_{0.5} \end{array}$	$13.5~\mathrm{GB}$	$\begin{array}{c} 70.0 \pm 1.2 \\ 71.3 \pm 0.3 \\ 73.8 \pm 0.3 \end{array}$

Table 6. HRDA detail crop variants. Up-LR: LR crop upsampled to HR resolution.

	Context Crop	Detail Crop	mIoU
1	$LR_{1.0}$	_	$68.5{\scriptstyle~\pm 0.9}$
2	$LR_{1.0}$	$LR_{0.5}$	69.1 ± 0.4
3	$LR_{1.0}$	$\text{Up-LR}_{0.5}$	71.9 ± 1.5
4	$LR_{1.0}$	$HR_{0.5}$	73.8 ± 0.3

ProCST: Boosting Semantic Segmentation using Progressive Cyclic Style-Transfer Experimental Results

 Table 7. Component ablation of HRDA.

	Context	Detail	Scale Attention	Overlapping Detail	Detail Loss	mIoU
1	_	\checkmark	_	_	_	65.1 ± 1.9
2	\checkmark	_	_	_	—	68.5 ± 0.9
3	\checkmark	\checkmark	Average	—	—	67.5 ± 0.8
4	\checkmark	\checkmark	Learned	—	—	$71.5\ \pm 0.5$
5	\checkmark	\checkmark	Learned	\checkmark	—	72.4 ± 0.1
6	\checkmark	\checkmark	Learned	\checkmark	\checkmark	$73.8 \hspace{0.2cm} \pm 0.3$