BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models

Junnan Li Dongxu Li Silvio Savarese Steven Hoi Salesforce Research

https://github.com/salesforce/LAVIS/tree/main/projects/blip2

Modality Modality Modality Modality Interaction Interaction Interaction Interaction OD Visual Visual Visual Textual OD Embed Embed Embed Embed **Textual** Textual Visual Textual Embed Embed Embed Embed Text Image Text Image Text **Image** Text Image (a) VE > TE > MI(b) VE = TE > MI(d) MI > VE = TE(c) VE > MI > TEVSE++(2017-2018) CLIP (2021) UNITER(2019-2020) VILT (2021) **BLIP** trilogy

- 1. OD: cost/limitation
- 2. VE>TE
- 3. MI

01 ALBEF->BLIP

ALign BEfore Fuse(ALBEF, 2021)

- 1. VIT -> end-to-end, NO OD
- 2. contrastive loss ->efficient/general downstream
- 3. VE>TE(=MI)

Bootstrapping Language-Image Pre-training (BLIP,2022)

- Decoder: Generation/Retrieval Task
- Web Data: massive but noisy

Two-stage

Increasing Pretraining Cost -> unaffordable off-the-shelf frozen encoders -> efficient

than Flamingo80B: 8.7% ↑ VQAva2, 54x fewer parameter

Lightweight Querying Transformer

- reduce computation cost
- counteract catastrophic forgetting

stage1:

Figure 2. (Left) Model architecture of Q-Former and BLIP-2's first-stage vision-language representation learning objectives. We jointly optimize three objectives which enforce the queries (a set of learnable embeddings) to extract visual representation most relevant to the text. (**Right**) The self-attention masking strategy for each objective to control query-text interaction.

information bottleneck

stage2:

Figure 3. BLIP-2's second-stage vision-to-language generative pre-training, which bootstraps from frozen large language models (LLMs). (**Top**) Bootstrapping a decoder-based LLM (e.g. OPT). (**Bottom**) Bootstrapping an encoder-decoder-based LLM (e.g. FlanT5). The fully-connected layer adapts from the output dimension of the Q-Former to the input dimension of the chosen LLM.

O2 Flamingo DeepMind 2022

Figure 3 | Overview of the Flamingo model. The Flamingo models are a family of visual language model (VLM) that can take as input visual data interleaved with text and can produce free-form text as output. Key to its performance are novel architectural components and pretraining strategies described in Section 3.

VQA

Figure 7. Model architecture for VQA finetuning, where the LLM receives Q-Former's output and the question as input, then predicts answers. We also provide the question as a condition to Q-Former, such that the extracted image features are more relevant to the question.

Models	#Trainable Params	Open- sourced?	Visual Question Answering VQAv2 (test-dev)	_	Captioning ps (val)	Image-Text Retrieval Flickr (test)	
			VQA acc.	CIDEr	SPICE	TR@1	IR@1
BLIP (Li et al., 2022)	583M	✓	-	113.2	14.8	96.7	86.7
SimVLM (Wang et al., 2021b)	1.4B	X	-	112.2	-	-	-
BEIT-3 (Wang et al., 2022b)	1.9B	X	-	-	-	94.9	81.5
Flamingo (Alayrac et al., 2022)	10.2B	X	56.3	-	5 .	-	=
BLIP-2	188M	✓	65.0	121.6	15.8	97.6	89.7

Table 1. Overview of BLIP-2 results on various **zero-shot** vision-language tasks. Compared with previous state-of-the-art models. BLIP-2 achieves the highest zero-shot performance while requiring the least number of trainable parameters during vision-language pre-training.

Models	#Trainable			QAv2	OK-VQA	GQA
	Params	Params	val	test-dev	test	test-dev
VL-T5 _{no-vqa}	224M	269M	13.5	-	5.8	6.3
FewVLM (Jin et al., 2022)	740M	785M	47.7	-	16.5	29.3
Frozen (Tsimpoukelli et al., 2021)	40M	7.1B	29.6 -		5.9	-
VLKD (Dai et al., 2022)	406M	832M	42.6	44.5	13.3	=
Flamingo3B (Alayrac et al., 2022)	1.4B	3.2B	_	49.2	41.2	_
Flamingo9B (Alayrac et al., 2022)	1.8B	9.3B	-	51.8	44.7	-
Flamingo80B (Alayrac et al., 2022)	10.2B	80B	-	56.3	50.6	-
BLIP-2 ViT-L OPT _{2.7B}	104M	3.1B	50.1	49.7	30.2	33.9
BLIP-2 ViT-G OPT _{2.7B}	107M	3.8B	53.5	52.3	31.7	34.6
BLIP-2 ViT-G OPT _{6.7B}	108M	7.8B	54.3	52.6	36.4	36.4
BLIP-2 ViT-L FlanT5 _{XL}	103M	3.4B	62.6	62.3	39.4	<u>44.4</u>
BLIP-2 ViT-G FlanT5 _{XL}	107M	4.1B	63.1	63.0	40.7	44.2
BLIP-2 ViT-G FlanT5 _{XXL}	108M	12.1B	65.2	65.0	<u>45.9</u>	44.7

Table 2. Comparison with state-of-the-art methods on zero-shot visual question answering.

Retrieval:

Model	#Trainable	Flickr30K Zero-shot (1K te Image → Text Text -						COCO Fine-tur mage \rightarrow Text		ned (5K test set) Text → Image			
Wilder	Params	R@1	R@5	R@10	R@1		R@10	R@1	R@5	R@10	R@1	R@5	C
Dual-encoder models													
CLIP (Radford et al., 2021)	428M	88.0	98.7	99.4	68.7	90.6	95.2	-	-	-	-	_	_
ALIGN (Jia et al., 2021)	820M	88.6	98.7	99.7	75.7	93.8	96.8	77.0	93.5	96.9	59.9	83.3	89.8
FILIP (Yao et al., 2022)	417M	89.8	99.2	99.8	75.0	93.4	96.3	78.9	94.4	97.4	61.2	84.3	90.6
Florence (Yuan et al., 2021)	893M	90.9	99.1	-	76.7	93.6	-	81.8	95.2	-	63.2	85.7	-
BEIT-3(Wang et al., 2022b)	1.9B	94.9	99.9	100.0	81.5	95.6	97.8	<u>84.8</u>	<u>96.5</u>	98.3	<u>67.2</u>	87.7	92.8
Fusion-encoder models													
UNITER (Chen et al., 2020)	303M	83.6	95.7	97.7	68.7	89.2	93.9	65.7	88.6	93.8	52.9	79.9	88.0
OSCAR (Li et al., 2020)	345M	-	-	-	-	-	-	70.0	91.1	95.5	54.0	80.8	88.5
VinVL (Zhang et al., 2021)	345M	-	=	-	-	, , , ,	-	75.4	92.9	96.2	58.8	83.5	90.3
Dual encoder + Fusion enco	der reranking												
ALBEF (Li et al., 2021)	233M	94.1	99.5	99.7	82.8	96.3	98.1	77.6	94.3	97.2	60.7	84.3	90.5
BLIP (Li et al., 2022)	446M	96.7	100.0	100.0	86.7	97.3	98.7	82.4	95.4	97.9	65.1	86.3	91.8
BLIP-2 ViT-L	474M	96.9	100.0	100.0	88.6	97.6	98.9	83.5	96.0	98.0	66.3	86.5	91.8
BLIP-2 ViT-G	1.2B	97.6	100.0	100.0	89.7	98.1	98.9	85.4	97.0	98.5	68.3	87.7	<u>92.6</u>

Table 5. Comparison with state-of-the-art image-text retrieval methods, finetuned on COCO and zero-shot transferred to Flickr30K.

Figure 5. Effect of vision-language representation learning on vision-to-language generative learning. Without representation learning, the Q-Former fails the bridge the modality gap, leading to significantly lower performance on zero-shot VQA.

COCO finetuning objectives	Image R@1	\rightarrow Text R@5	$\begin{array}{c} \text{Text} \rightarrow \text{Image} \\ \text{R@1} \text{R@5} \end{array}$			
ITC + ITM	84.5	96.2	67.2	87.1		
ITC + ITM + ITG	85.4	97.0	68.3	87.7		

Table 6. The image-grounded text generation (ITG) loss improves image-text retrieval performance by enforcing the queries to extract language-relevant visual features.

LLM to understand image

Figure 4. Selected examples of **instructed zero-shot image-to-text generation** using a BLIP-2 model w/ ViT-G and FlanT5_{XXL}, where it shows a wide range of capabilities including visual conversation, visual knowledge reasoning, visual commensense reasoning, storytelling, personalized image-to-text generation, etc.

unsatisfactory image-to-text generation results

inherits the risks of LLMs

offensive language, propagating social bias, or leaking private information