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Figure 2. (Left) Model architecture of Q-Former and BLIP-2’s first-stage vision-language representation learning objectives. We jointly
optimize three objectives which enforce the queries (a set of learnable embeddings) to extract visual representation most relevant to the
text. (Right) The self-attention masking strategy for each objective to control query-text interaction.
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Figure 3. BLIP-2’s second-stage vision-to-language generative pre-training, which bootstraps from frozen large language models (LLMs).

(Top) Bootstrapping a decoder-based LLM (e.g.

OPT). (Bottom) Bootstrapping an encoder-decoder-based LLM (e.g. FlanT5). The

fully-connected layer adapts from the output dimension of the Q-Former to the input dimension of the chosen LLM.
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Visual Question Answering Image Captioning Image-Text Retrieval

VQA Models ig;l;‘:ble gof’ige o VQAV2 (test-dev) NoCaps (val) Flickr (test)
VQA acc. CIDEr SPICE TR@l1 IR@1
BLIP (Li et al., 2022) 583M v - 113.2 14.8 96.7 86.7
SimVLM (Wang et al,, 2021b) 1.4B X - 112.2 - - -
Input Image s eEon BEIT-3 (Wang et al., 2022b) 1.9B X - - - 94.9 81.5
. . Flamingo (Alayrac et al., 2022) 10.2B X 56.3 - - - -
[D O35 J [What is the cat weanng?]
L ¥ BLIP-2 188M v ‘ 65.0 121.6 15.8 97.6 89.7
= | Q-Former ‘
Table 1. Overview of BLIP-2 results on various zero-shot vision-language tasks. Compared with previous state-of-the-art models. BLIP-2
achieves the highest zero-shot performance while requiring the least number of trainable parameters during vision-language pre-training.
Connected Question Models #Trainable #Total VQAV2 OK-VQA GQA
[D OB B ] [What is the cat wean'ng?] Params Params | val test-dev test test-dev
VL-TSno-vqa 224M 26OM 13.5 - 5.8 6.3
FewVLM (Jin et al., 2022) 740M 785M | 47.7 - 16.5 29.3
Frozen (Tsimpoukelli et al., 2021) 40M 7.1B 29.6 - 5.9 -
Answer VLKD (Dai eI: al., 2022) 406M 832M | 426 445 13.3 :
Flamingo3B (Alayrac et al., 2022) 1.4B 3.2B - 492 41.2 -
Figure 7. Model architecture for VQA finetuning, where the LLM Flamingo9B (Alayrac et al., 2022) 1.8B 9.3B - 51.8 44.7 E
receives Q-Former’s output and the question as input, then predicts Flamingo80B (Alayrac et al., 2022) 10.2B 80B - 56.3 50.6 -
answers. We also provide the question as a condition to Q-Former, BLIP-2 ViT-L OPT; 75 104M 3 1B 50.1 497 30.2 33.9
such that the extracted image features are more relevant to the BLIP-2 ViT-G OPT, 15 107M 3 8B 535 523 31.7 34.6
question. BLIP-2 ViT-G OPT 15 108M 7.8B 543 526 36.4 36.4
BLIP-2 ViT-L FlanT5x 103M 3.4B 62.6 62.3 394 44.4
BLIP-2 ViT-G FlanT5x; 107M 4.1B 63.1 63.0 40.7 442
BLIP-2 ViT-G FlanT5xx1 108M 12.1B | 652  65.0 45.9 44.7

Table 2. Comparison with state-of-the-art methods on zero-shot visual question answering.
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Retrieval:
4Trainable Flickr30K Zero-shot (1K test set) COCO Fine-tuned (5K test set)
Model Darams Image — Text Text — Image Image — Text Text — Image
R@1 R@5 R@I10 R@1 R@5 R@10|R@1 R@5 R@10 R@1 R@5 R@I10
Dual-encoder models
CLIP (Radford et al., 2021) 428M 88.0 987 994 687 90.6 952 - - - - - -
ALIGN (Jia et al., 2021) 820M 88.6 987 997 757 938 968 | 77.0 935 969 599 833 898
FILIP (Yao et al., 2022) 417TM 89.8 992 998 750 934 963 | 789 944 974 612 843 90.6
Florence (Yuan et al., 2021) 893M 90,9 99.1 - 76.7 93.6 - 81.8 95.2 - 63.2 85.7 -
BEIT-3(Wang et al., 2022b) 1.9B 949 999 100.0 815 956 978 | 848 965 983 672 87.7 928
Fusion-encoder models
UNITER (Chen et al., 2020) 303M 836 957 977 687 892 939 |657 886 938 529 799 88.0
OSCAR (Li et al., 2020) 345M - - - - - - 70.0 91.1 955 540 80.8 88.5
VinVL (Zhang et al., 2021) 345M - - - - - - 754 929 962 588 835 903
Dual encoder + Fusion encoder reranking
ALBEEF (Li et al., 2021) 233M 94.1 995 997 828 963 98.1 | 776 943 972 607 843 905
BLIP (Li et al., 2022) 446M 96.7 100.0 100.0 86.7 97.3 98.7 | 824 954 979 651 863 918
BLIP-2 ViT-L 474M 96.9 1000 100.0 886 976 989 | 835 960 980 663 865 91.8
BLIP-2 ViT-G 1.2B 97.6 100.0 100.0 89.7 981 989 | 854 970 985 683 87.7 926

Table 5. Comparison with state-of-the-art image-text retrieval methods, finetuned on COCO and zero-shot transferred to Flickr30K.
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Figure 5. Effect of vision-language representation learning on
vision-to-language generative learning. Without representation
learning, the Q-Former fails the bridge the modality gap, leading
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to significantly lower performance on zero-shot VQA.

COCO finetuning | Image — Text Text — Image
objectives R@1 R@5
ITC + ITM 84.5 96.2
ITC+ITM+ITG | 854 97.0

Table 6. The image-grounded text generation (ITG) loss improves
image-text retrieval performance by enforcing the queries to extract

language-relevant visual features.
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LLM to understand image

Explain the advantages of
this product.

The audi e-tron quattro concept is a
plug-in hybrid electric sports car
that has a range of 310 miles and
can accelerate from 0 to 60 mph in
just 4 seconds.

3

Tell me something about
the history of this place.

The great wall of china was built in
221 bc by emperor gin shihuang to
protect the emperor's capital from
invaders from the north.

Write down the facts that you
know about this flower.

It is a genus of flowering plants in the
orchid family, orchidaceae. It is
native to eastern asia and south east
asia. Itis a perennial flowering plant
that grows up to a height of 1 m.

Is this photo unusual?

Yes, it's a house that looks like it's
upside down.

How could someone get
out of the house?

It has a slide on the side of the
house.
A \

&3

What are shown in the photo?

é A man and a chicken.

What does the man feel
and why?

He is scared of the chicken
because it is flying at him.

What are the ingredients |
need to make this?

Pepperoni, mozzarella cheese, pizza
sauce, olive oil, salt, pepper, basil.

What is the first step?

8

Place the pizza dough on a baking
sheet, brush with olive oil, sprinkle
with salt, pepper, and basil.

8

8

Which city is this?

é Singapore.

Why do you think so?

é The city has a statue of a merlion.
"

What happened at the end
of this movie?

The titanic sank.

Did Leonardo Dicaprio's
character survive?

No, he drowned.

AS

E=

What is in the photo? 8

@ A pizza that looks like a cat.

What is the nose made of? 8

é A slice of pepperoni.

h

-

Write a romantic message
that goes along this photo.

8

Love is like a sunset, it's hard to
see it coming but when it does it's
so beautiful.

&

o

m—

Tell us about the photo you
took for Darren and Jade.

Darren and Jade are a couple who
have a passion for horses, so we
decided to take a photo of them
with a horse in the desert on their
wedding day.
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Write a conversation
between the two animals.

8
8

cat: hey dog, can i ride on your back?
dog: sure, why not?
cat: i'm tired of walking in the snow.

&

J

Figure 4. Selected examples of instructed zero-shot image-to-text generation using a BLIP-2 model w/ ViT-G and FlanT5xx;., where it
shows a wide range of capabilities including visual conversation, visual knowledge reasoning, visual commensense reasoning, storytelling,

personalized image-to-text generation, etc.

zero-shot image-to-text capabilities



unsatisfactory image-to-text generation results

inherits the risks of LLMs

Write a famous quote said
by this person.

albert einstein - the world is a book,
and those who do not travel read
only one page.

=N '

Can | wear this for my trip
to Canada in December?

X ®

yes, it's a nice shirt and shorts, but
it's a little too casual for a trip to
.| Canada.

8¢

o

Please write the specifics of
this product.

‘él apple iphone 11 128gb space gray

8

Inaccurate knowledge
(quote is from a different person)

Incorrect reasoning path

(should have considered weather)

Information not up-to-date
(this is iphone 14)

offensive language, propagating social bias, or leaking private information




