Associating Objects with Transformers for Video Object Segmentation

Zongxin Yang^{1,2}, Yunchao Wei³, Yi Yang²

¹ Baidu Research

² CCAI, College of Computer Science and Technology, Zhejiang University ³ ReLER, Centre for Artificial Intelligence, University of Technology Sydney {zongxinyang1996, wychao1987, yee.i.yang}@gmail.com

arXiv.org > cs > arXiv:2106.02638

Search..

All fields

Search

Help | Advanced Search

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 4 Jun 2021 (v1), last revised 22 Jun 2021 (this version, v2)]

Associating Objects with Transformers for Video Object Segmentation

Zongxin Yang, Yunchao Wei, Yi Yang

This paper investigates how to realize better and more efficient embedding learning to tackle the semi-supervised video object segmentation under challenging multiobject scenarios. The state-of-the-art methods learn to decode features with a single positive object and thus have to match and segment each target separately under multi-object scenarios, consuming multiple times computing resources. To solve the problem, we propose an Associating Objects with Transformers (AOT) approach to match and decode multiple objects uniformly. In detail, AOT employs an identification mechanism to associate multiple targets into the same highdimensional embedding space. Thus, we can simultaneously process the matching and segmentation decoding of multiple objects as efficiently as processing a single object. For sufficiently modeling multi-object association, a Long Short-Term Transformer is designed for constructing hierarchical matching and propagation. We conduct extensive experiments on both multi-object and single-object benchmarks to examine AOT variant networks with different complexities. Particularly, our AOT-L outperforms all the state-of-the-art competitors on three popular benchmarks, i.e., YouTube-VOS (83.7% J&F), DAVIS 2017 (83.0%), and DAVIS 2016 (91.0%), while keeping more than 3X faster multi-object run-time. Meanwhile, our AOT-T can maintain real-time multi-object speed on the above benchmarks. We ranked 1st in the 3rd Large-scale Video Object Segmentation Challenge. The code will be publicly available at this https URL.

Comments: 18 pages, 9 figures, 5 tables

Subjects: Computer Vision and Pattern Recognition (cs.CV)

arXiv:2106.02638 [cs.CV] Cite as:

(or arXiv:2106.02638v2 [cs.CV] for this version)

Submission history

From: Zongxin Yang [view email]

[v1] Fri, 4 Jun 2021 17:59:57 UTC (5,909 KB)

[v2] Tue, 22 Jun 2021 14:48:51 UTC (5,916 KB)

Download:

- PDF
- Other formats

(license)

Current browse context: cs.CV

< prev next > new I recent I 2106

Change to browse by: CS

References & Citations

- NASA ADS
- Google Scholar
- Semantic Scholar

DBLP - CS Bibliography

listing | bibtex

Yunchao Wei Yi Yang

Export Bibtex Citation

Bookmark

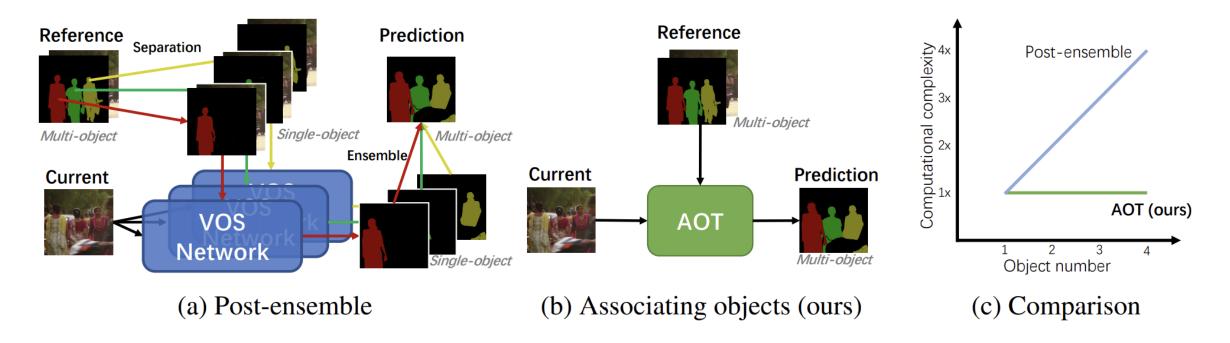
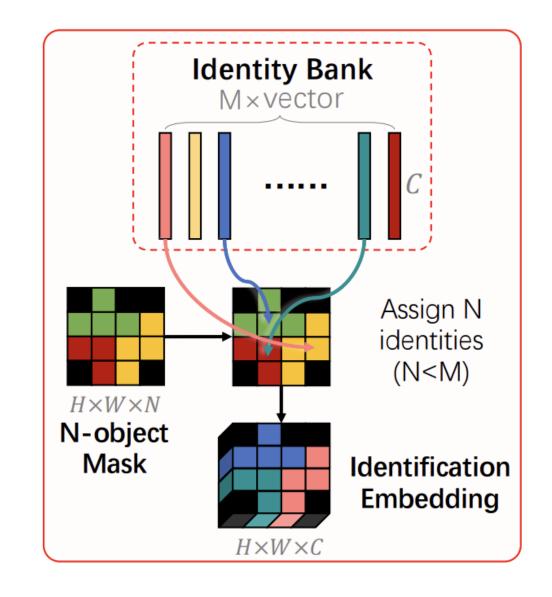


Figure 1: The state-of-the-art VOS methods (e.g., [59, 40]) process multi-object scenarios in a post-ensemble manner (a). In contrast, our AOT associates and decodes multiple objects uniformly (b), leading to better efficiency (c).

Identity Assignment

Identity Embedding


$$E = ID(Y, D) = YPD,$$

$$V' = AttID(Q, K, V, Y|D)$$

$$Att(Q, K, V + ID(Y, D)) = Att(Q, K, V + E),$$

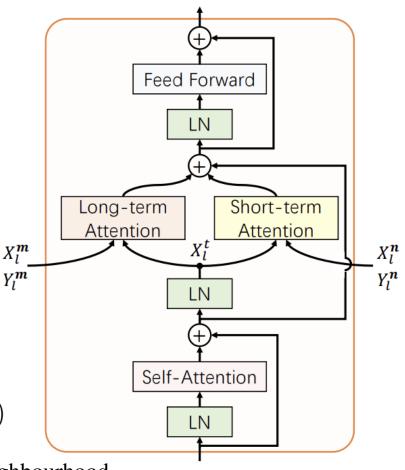
Identity Decoding

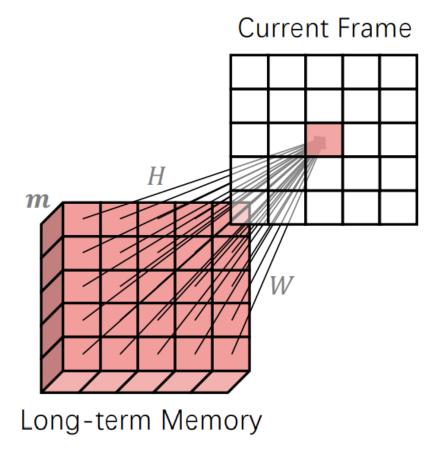
$$Y' = softmax(PF^{\mathcal{D}}(V')) = softmax(PL^{D}),$$

Long-short term transformer (LSTT)

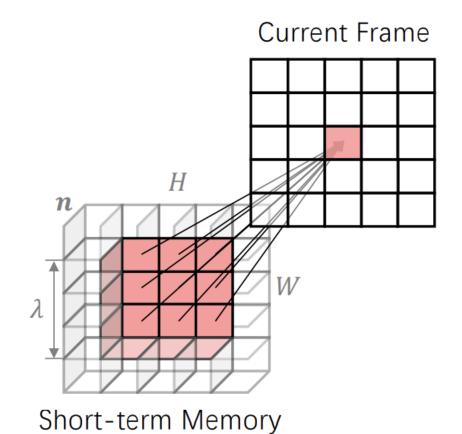
Long Term Attention

$$AttLT(X_l^t, X_l^{\mathbf{m}}, Y^{\mathbf{m}}) = AttID(X_l^t W_l^K, X_l^{\mathbf{m}} W_l^K, X_l^{\mathbf{m}} W_l^V, Y^{\mathbf{m}} | D),$$


$$X_l^{\mathbf{m}} = Concat(X_l^{m_1},...,X_l^{m_T})$$
 and $Y^{\mathbf{m}} = Concat(Y^{m_1},...,Y^{m_T})$

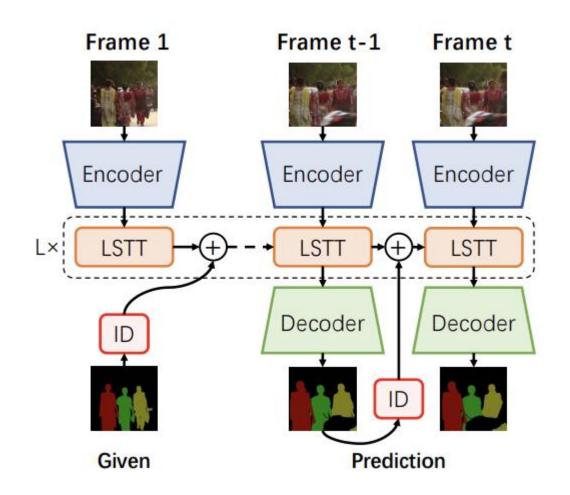

Short Term Attention

$$AttST(X_l^t, X_l^{\mathbf{n}}, Y^{\mathbf{n}}|p) = AttLT(X_{l,p}^t, X_{l,\mathcal{N}(p)}^{\mathbf{n}}, Y_{l,\mathcal{N}(p)}^{\mathbf{n}}),$$


$$X_l^{\mathbf{n}} = Concat(X_l^{t-1}, ..., X_l^{t-n}) \text{ and } Y^{\mathbf{n}} = Concat(Y^{t-1}, ..., Y^{t-n})$$

where $X_{l,p}^t \in \mathbb{R}^{1 \times C}$ is the feature of X_l^t at location p, $\mathcal{N}(p)$ is a $\lambda \times \lambda$ spatial neighbourhood centered at location p, and thus $X_{l,\mathcal{N}(p)}^{\mathbf{n}}$ and $Y_{l,\mathcal{N}(p)}^{\mathbf{n}}$ are the features and masks of the spatial-temporal neighbourhood, respectively, with a shape of $n\lambda^2 \times C$ or $n\lambda^2 \times N$.

(a) Long-term Attention



(b) Short-term Attention

Overview Architecture

- Encoder
 - MobileNet V2

- Decoder
 - FPN

(b) DAVIS 2017

Methods			Se	een	Uns	seen		Methods	$\mathcal{J}\&\mathcal{F}$	$\mathcal J$	\mathcal{F}	FPS	AOT-Tiny:L=1, m=1
AGICVPRIPI [21] 66.1 67.8 - 60.8 CPBI [59] (Y) 81.9 79.3 84.5 5.9 PReMIACCV IS [27] 66.9 71.4 75.9 56.5 63.7 0.17 BOLT 71.6 - 64.3 - 0.74 STMICCVPRIPI [32] 79.4 79.7 84.2 72.8 80.9 - CFBI 71.1 71.6 - 64.3 - 0.74 STMICCVPRIPI [32] 79.4 79.7 84.2 72.8 80.9 - CFBI 71.1 71.6 80.2 80.7 85.1 74.0 80.9 - KMN [40] (Y) 82.8 80.0 85.6 4.2 KMN [40] (Y) 82.8 80.0 85.6 4.2 KMN [40] (Y) 82.8 80.0 85.6 4.2 KMN [40] (Y) 82.8 80.0 85.0 4.2 KMN [40] (Y) 77.2 74.1 80.3 - CFBI [59] (Y) 75.0 71.4 78.7 5.3 KMN [40] (Y) 77.2 74.1 80.3 - FASTICLE (FBI [59] (Y) 75.0 71.4 78.7 5.3 KMN [40] (Y) 77.2 74.1 80.3 - FASTICLE (FBI [59] (Y) 75.0 71.4 81.6 3.4 KMN [40] (Y) 77.2 74.1 80.3 - FASTICLE (FBI [59] (Y) 75.0 71.4 81.6 3.4 KMN [40] (Y) 77.2 74.1 80.3 - FASTICLE (FBI [59] (Y) 75.0 71.4 81.6 3.4 KMN [40] (Y) 77.2 74.1 80.3 - FASTICLE (FBI [59] (Y) 75.5 71.8 79.1 80.1 80.1 80.1 80.1 80.1 80.1 80.1 80	Methods	$\mathcal{J}\&\mathcal{F}$	\mathcal{J}	\mathcal{F}	\mathcal{J}	\mathcal{F}	FPS	Valid	lation 201	17 Split			. / (
AG[cvprigi [21] 66.1 67.8 - 60.8 CFBI [39] (Y) 81.9 79.3 84.5 79.9 85.1 - PReMIACCVISI [27] 66.9 71.4 75.9 56.5 63.7 0.17 8J. 27.8 80.9 79.4 79.7 84.2 72.8 80.9 - CFBI [30] (Y) 82.8 80.2 85.2 2.5 EGMN[ECCV20] [26] 80.2 80.7 85.1 74.0 80.9 - KMN [40] (Y) 82.8 80.0 85.6 4.2 EGMN[ECCV20] [40] 81.4 81.4 85.6 75.3 83.3 - CFBI [60] (Y) 82.9 80.1 85.7 5.6 CFBI [ECCV20] [59] 81.5 80.4 84.9 76.4 84.4 - AOT-S (Y) 81.0 78.5 83.4 29.0 ST[cvpr21] [15] 81.7 81.2 - 76.0 AOT-S (Y) 81.0 78.5 83.4 29.0 ECFBI [+ITPAMIZI] [60] 82.8 81.8 86.6 77.1 85.6 40. AOT-B (Y) 82.1 79.4 84.8 22.7 AOT-B 83.2 82.6 87.4 77.3 85.6 17.0 AOT-B (Y) 82.1 79.4 84.8 22.7 AOT-B 83.7 82.5 87.5 77.9 86.7 15.2 STM* [32] (Y) 72.2 69.3 75.2 - CFBI [59] (Y) 76.6 73.0 80.1 2.9 ECFBI [ECCV20] [59] 81.8 80.9 - 76.6 CFBI [59] (Y) 76.6 73.0 80.1 2.9 ECFBI [ECCV20] [59] 81.8 80.9 - 76.6 CFBI [59] (Y) 76.6 73.0 80.1 2.9 ECFBI [ECCV20] [59] 81.8 80.9 - 76.6 CFBI [59] (Y) 76.6 73.0 80.1 2.9 ECFBI [ECCV20] [59] 81.8 80.9 - 76.6 CFBI [59] (Y) 76.6 73.0 80.1 2.9 ECFBI [ECCV20] [59] 81.8 80.9 - 76.6 CFBI [59] (Y) 76.6 73.0 80.1 2.9 ECFBI [ECCV20] [59] 81.8 80.9 - 76.6 CFBI [59] (Y) 76.6 73.0 80.1 2.9 ECFBI [ECCV20] [59] 81.8 80.9 - 76.6 CFBI [59] (Y) 76.6 73.0 80.1 2.9 ECFBI [ECCV20] [59] 81.8 80.9 - 76.6 CFBI [59] (Y) 76.6 73.0 80.1 2.9 ECFBI [ECCV20] [59] 81.8 80.9 - 76.6 CFBI [59] (Y) 76.6 73.0 80.1 2.9 ECFBI [60] (Y) 78.0 74.4 81.6 3.4 ECFBI [60] (Y) 78.0 74	Validation 2018 Split				` /					AOT-Small:L=2. m=1			
Bolt 27 67 79.4 79.7 84.2 72.8 80.9 -				- 75.0		- 62.7	- 0.17					5.9	-,
EGMN		71.1	71.6	-	64.3	-		EGMN [26] (Y)	82.8				AOT-Base $I = 3 m = 1$
KMN ECCV20 [40] 81.4 81.4 85.6 75.3 83.3 - CFBI													7(01 D030.L 0, 111 1
LWL[ECCV20] [7]	KMN[ECCV20] [40]	81.4	81.4	85.6	75.3	83.3		CFBI+ [60] (Y)				5.6	ΔOT_{-1} arge $1=3$
CFBI-[TPAMI21] [60] 82.8 81.8 86.6 77.1 85.6 4.0 AOT-B (Y) 82.1 79.4 84.8 22.7 AOT-S 82.6 82.0 86.7 76.6 85.0 22.1 AOT-B 83.2 82.6 87.4 77.3 85.6 17.0 AOT-L 83.7 82.5 87.5 77.9 86.7 15.2 STM* [32] (Y) 72.2 69.3 75.2 - CFBI [59] (Y) 75.0 71.4 78.7 5.3 CFBI* [59] (Y) 76.6 73.0 80.1 2.9 ST[CVPR21] [15] 81.8 80.9 - 76.6 CFBI-[TPAMI21] [60] 82.6 81.7 86.2 77.1 85.2 4.0 AOT-S 82.2 81.3 85.9 76.6 84.9 22.1 AOT-B (Y) 78.4 74.8 82.1 18.9	LWL[ECCV20] [7]	81.5	80.4		76.4		5.4 -	AOT-S	79.2	76.4	82.0	29.0	•
AOT-T 80.2 80.1 84.5 74.0 82.2 32.2 AOT-L (Y) 83.0 80.3 85.7 18.9 AOT-S 82.6 82.0 86.7 76.6 85.0 22.1 AOT-L 83.7 82.5 87.5 77.9 86.7 15.2 STM* [32] (Y) 72.2 69.3 75.2 - CFBI [59] (Y) 75.0 71.4 78.7 5.3 CFBI* [59] (Y) 76.6 73.0 80.1 2.9 STGCVPR21] [15] 81.8 80.9 - 76.6 CFBI * [60] (Y) 78.0 74.4 81.6 3.4 CFBI* * [60] (Y) 79.7 79.6 83.8 73.7 81.8 32.2 AOT-S (Y) 73.6 69.7 77.4 29.0 AOT-S 82.2 81.3 85.9 76.6 84.9 22.1 AOT-B (Y) 78.4 74.8 82.1 18.9				- 86.6		- 85.6	4.0	` '					$III-\{\pm,7,\pm0,$
AOT-B AOT-L 83.7 82.6 87.4 77.3 85.6 17.0 AOT-L 83.7 82.5 87.5 77.9 86.7 15.2 Validation 2019 Split STM* [32] (Y) 72.2 69.3 75.2 -	AOT-T	80.2	80.1	84.5	74.0	82.2	32.2	` '		80.3	85.7	18.9	
Validation 2019 Split CFBI [59] (Y) 75.0 71.4 78.7 5.3 AOT-Base 5 times CFBI [ECCV20] [59] 81.0 80.6 85.1 75.2 83.0 3.4 KMN* [40] (Y) 77.2 74.1 80.3 - faster than CFBI SST [CVPR21] [15] 81.8 80.9 - 76.6 - - CFBI+* [60] (Y) 78.0 74.4 81.6 3.4 (15.2fps vs 3.4fps) AOT-T (Y) 69.3 66.0 72.5 39.1 (15.2fps vs 3.4fps) AOT-S (Y) 73.6 69.7 77.4 29.0 (15.2fps vs 3.4fps) AOT-B 83.3 82.5 87.0 77.8 86.0 17.0 AOT-B (Y) 75.5 71.8 79.1 22.7 AOT-B 83.3 82.5 87.0 77.8 86.0 17.0 AOT-L (Y) 78.4 74.8 82.1 18.9								Testing 2017 Split					
CFBI[ECCV20] [59] 81.0 80.6 85.1 75.2 83.0 3.4 KMN* [40] (Y) 77.2 74.1 80.3 - ST[CVPR21] [15] 81.8 80.9 - 76.6 CFBI+[TPAMI21] [60] 82.6 81.7 86.2 77.1 85.2 4.0 AOT-T 79.7 79.6 83.8 73.7 81.8 32.2 AOT-S (Y) 73.6 69.7 77.4 29.0 AOT-S 82.2 81.3 85.9 76.6 84.9 22.1 AOT-B 83.3 82.5 87.0 77.8 86.0 17.0 AOT-L (Y) 78.4 74.8 82.1 18.9					77.9	86.7	15.2						AOT Paga E timos
SST[CVPR21] [15]	Validation 2019 Split				CFBI* [59] (Y)	76.6	73.0	80.1					
CFBI+[TPAMI21] [60] 82.6 81.7 86.2 77.1 85.2 4.0 AOT-T (Y) 69.3 66.0 72.5 39.1 (15.2105 VS 3.4105) AOT-T 79.7 79.6 83.8 73.7 81.8 32.2 AOT-S (Y) 73.6 69.7 77.4 29.0 AOT-S 82.2 81.3 85.9 76.6 84.9 22.1 AOT-B (Y) 75.5 71.8 79.1 22.7 AOT-B 83.3 82.5 87.0 77.8 86.0 17.0 AOT-L (Y) 78.4 74.8 82.1 18.9				85.1		83.0	3.4	/					
AOT-S 82.2 81.3 85.9 76.6 84.9 22.1 AOT-B (Y) 75.5 71.8 79.1 22.7 AOT-B 83.3 82.5 87.0 77.8 86.0 17.0 AOT-L (Y) 78.4 74.8 82.1 18.9	CFBI+[TPAMI21] [60]												(15.2Tps vs 3.4Tps)
	AOT-S	82.2	81.3	85.9	76.6	84.9		` /					
								` /					

Ablation study

Table 3: Ablation study. The experiments are based on AOT-S and conducted on the validation 2018 split of YouTube-VOS [55] without pre-training on synthetic videos. Self: the position embedding type used in the self-attention. Rel: use relative positional embedding [41] on the local attention.

(a) Identity number	(b) Local window size	(c) Local frame number		
$M \mathcal{J}\&\mathcal{F} \mathcal{J}^{seen} \mathcal{J}^{unseen}$	$\lambda \mathcal{J}\&\mathcal{F} \mathcal{J}^{seen} \mathcal{J}^{unseen}$	$n \mathcal{J}\&\mathcal{F} \mathcal{J}^{seen} \mathcal{J}^{unseen}$		
10 80.3 80.6 73.7	7 80.3 80.6 73.7	1 80.3 80.6 73.7		
15 79.0 79.4 72.1	5 78.8 79.5 71.9	2 80.0 79.8 73.7		
20 78.3 79.4 70.8	3 78.3 79.3 70.9	3 79.1 80.0 72.2		
30 77.2 78.5 70.2	0 74.3 74.9 67.6	0 74.3 74.9 67.6		

(d) LSTT block number

L	$\mathcal{J}\&\mathcal{F}$	\mathcal{J}^{seen}	\mathcal{J}^{unseen}	FPS	Param
2	80.3	80.6	73.7	22.1	7.0M
3	80.9	81.1	74.0	17.0	8.3M
1	77.9	78.8	71.0	32.2	5.7M

(e) Positional embedding

Self	Rel	$\mathcal{J}\&\mathcal{F}$	\mathcal{J}^{seen}	\mathcal{J}^{unseen}
sine	\checkmark	80.3	80.6	73.7
none	√	80.1	80.4	73.5
sine	-	79.7	80.1	72.9

Interpretability — Identity Bank

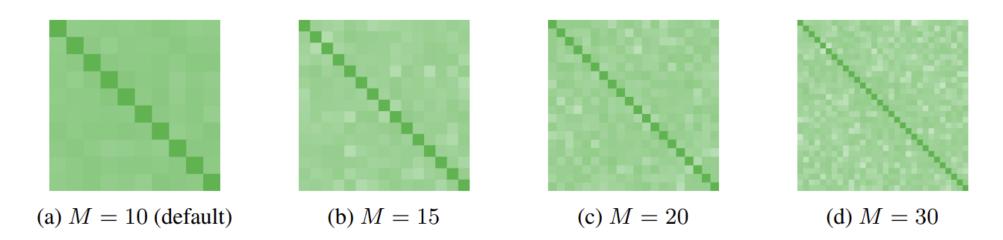
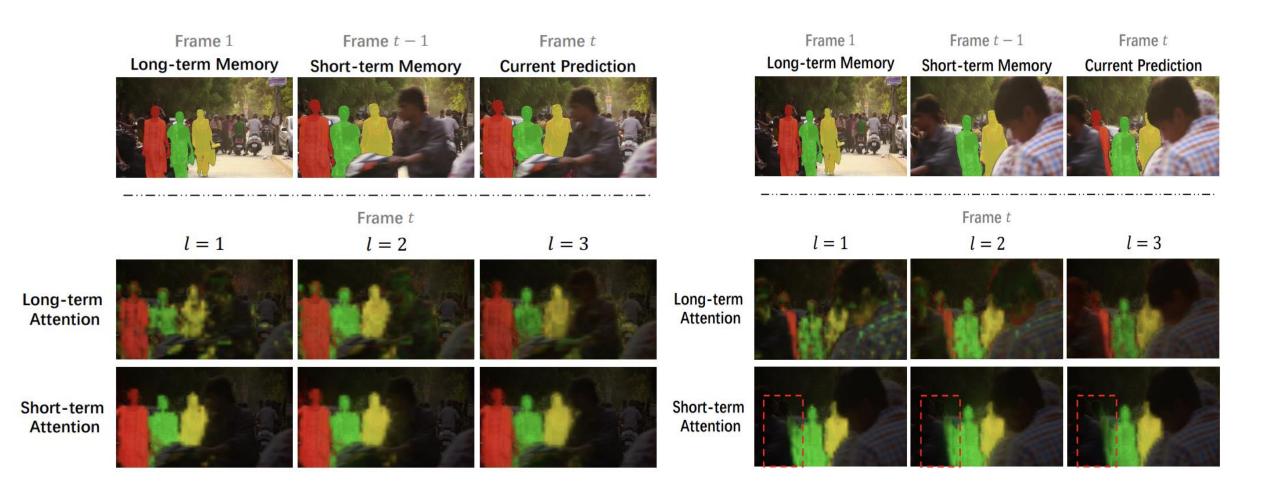



Figure 4: Visualization of the cosine similarity between every two of M identification vectors in the identity bank. We use the form of a $M \times M$ symmetric matrix to visualize all the cosine similarities, and the values on the diagonal are all equal to 1. The darker the green color, the higher the similarity. In the case of M=10, the similarities are stable and balanced. As the vector number M increases, The visualized matrix becomes less and less smooth, which means the similarities become unstable.

Interpretability — Long term & Short term Memory

Thanks for watching!