Fine-Grained Entity Segmentation Lu Qi¹*, Jason Kuen²*, Weidong Guo³*, Tiancheng Shen⁴, Jiuxiang Gu², Wenbo Li⁴, Jiaya Jia⁴ Zhe Lin², Ming-Hsuan Yang¹ ¹The University of California, Merced ²Adobe Research ³QQ Browser Lab, Tencent ⁴The Chinese University of Hong Kong ## **Entity Segmentation** Each entity is a thing or stuff that does not consider category information ## **EntitySeg Dataset** - Large-scale - High-quality - High-resolution ## CropFormer Add high-resolution crop inputs to improve the quality of fine-grained entity segmentation. Crop & Resize $$\downarrow$$ $$I = \{I^{O}, I^{C}\} = \Gamma\{I^{O}, \delta\}$$ $$I \in R^{N \times 2 \times H_{I} \times W_{I} \times 3}$$ $$\mathbf{E_i} = \Phi_i(\mathbf{Q_i}, \Theta(\mathbf{I})) \qquad \mathbf{E_i} \in R^{N \times 2 \times 1 \times 1 \times K}$$ $$\mathbf{U_i^e}, \mathbf{U_i^m} = PredHead_i(\mathbf{E_i}, \mathbf{P_i^h})$$ Generate batch queries Q_b that are fully shared by the full image and its crop to represent the same entities consistently $$\mathbf{Q_b} = FFN(SAtt(XAtt(\underbrace{f_q(\mathbf{E}_{I^o})}_{query}, \underbrace{f_k(\mathbf{E_i})}_{key}, \underbrace{f_v(\mathbf{E_i})}_{value}))))$$ $$\begin{aligned} \mathbf{E_b} &= \Phi_b(\mathbf{Q_b}, \Theta(\mathbf{I})) &\quad \boldsymbol{Q_b} \in R^{N \times 1 \times 1 \times 1 \times K}, \quad \boldsymbol{E_b} \in R^{N \times 1 \times 1 \times 1 \times K} \\ &\quad \qquad \downarrow \quad \text{broadcast} \\ \mathbf{U_b^e}, \mathbf{U_b^m} &= \text{PredHead}_{\mathbf{b}}(\mathbf{E_b}, \mathbf{P_b^h}) &\quad \boldsymbol{E_b} \in R^{N \times 2 \times 1 \times 1 \times K} \end{aligned}$$ $$\mathcal{L} = \sum_{\mathbf{k} \in \{\mathbf{i}, \mathbf{b}\}} \mathcal{L}_{\mathbf{k}}^{ce}(\mathbf{U}_{\mathbf{k}}^{e}, \mathbf{G}_{\mathbf{k}}^{e}) + \sum_{\mathbf{k} \in \{\mathbf{i}, \mathbf{b}\}} \mathcal{L}_{\mathbf{k}}^{bce}(\mathbf{U}_{\mathbf{k}}^{m}, \mathbf{G}_{\mathbf{k}}^{m}) + \sum_{\mathbf{k} \in \{\mathbf{i}, \mathbf{b}\}} \mathcal{L}_{\mathbf{k}}^{dice}(\mathbf{U}_{\mathbf{k}}^{m}, \mathbf{G}_{\mathbf{k}}^{m}),$$ (7) two separate losses L_i and L_b for image- and batch-level predictions | Method | Decoder | AP^e | AP^e_{50} | AP_{75}^e | RT (ms) | | |-----------------------------------|----------|-----------|-------------|-------------|---------|--| | SS-Mask2Former | Image-O | 39.5 | 56.9 | 40.2 | 637 | | | SS-Mask2Former($\times \delta$) | Image-O | 39.9 57.4 | | 40.3 | 876 | | | MS-Mask2Former | Image-O | 39.2 | 56.3 | 39.5 | 1324 | | | MS-Mask2Former | Batch-OC | 39.3 | 56.4 | 39.7 | 2783 | | | | Image-O | 39.3 | 56.7 | 39.8 | 637 | | | CranEarmar | Batch-O | 39.1 | 56.6 | 39.7 | 1514 | | | CropFormer | Batch-C | 40.2 | 57.5 | 40.8 | 1507 | | | | Batch-OC | 41.0 | 58.4 | 41.9 | 1545 | | Table 7: Ablation study on the ensemble strategy on full image and four crops. The 'Decoder' column indicates whether we use the inference result of the full image ('O'), four cropped patches ('C'), or both of them ('OC') from the 'Image' or 'Batch' decoder. Here, the run-time (RT) is the time of network forward except the data processing and calculated on A100 GPU. | δ | AP^e | | Train | Test | AP^e | XAtt | SAtt | FFN | APe | |-----|---------|---|-----------|-----------|--------|--------------|--------------|--------------|------| | 0.5 | 38.5 | , | Random | Fixed (4) | 39.7 | √ | 0 | 0 | 40.7 | | 0.6 | 40.2 | | Fixed (4) | Fixed (4) | 41.0 | \checkmark | 0 | ✓ | 40.8 | | 0.7 | 41.0 | | Fixed (4) | Fixed (8) | 41.3 | \checkmark | \checkmark | 0 | 40.8 | | 0.8 | 40.9 | | Fixed (8) | Fixed (8) | 41.0 | \checkmark | \checkmark | \checkmark | 41.0 | | | (a) (b) | | | (c) | | | | | | Table 9: Ablation study on the usage of crop ratio δ , crop type and association module in CropFormer. In sub-table (b), 'Random' indicates random crops and 'Fixed (4/8)' indicates 4 or 8 fixed corner crops. In sub-table(c), \checkmark and \circ means whether we use the module or not.