Reviving Iterative Training with Mask Guidance for Interactive Segmentation

Konstantin Sofiiuk, Ilia A. Petrov* and Anton Konushin**

Visual Understanding lab., AI Center Moscow, Samsung Electronics Co., Lesnaya 5C, Moscow, Russia

RITM	icip2022	36
EdgeFlow	iccv2021	17
CDNet	iccv2021	13
FocalClick	cvpr2022	6
FocusCut	cvpr2022	4
PseudoClick	eccv2022	2

Task

class agnostic segmentation with user's input

Pipeline

The key difference is in the user input:
its main aspects are the encoding and processing of the encoded input

encoding

Disks with a small radius

The changes in disk encoding caused by adding new points or moving existing ones are always local and only slightly affect the encoding map.

A distance transform map can change drastically when a new point is added, especially if there are only a few points. In turn, such sudden considerable changes might confuse a network.

processing of the encoded input

DMF

Conv1E

Iterative Sampling Strategy

for click_indx in range(num_iters):

```
output = self.net(img, points)
points = get_next_points(output, gt_mask, points)
```


Iterative Sampling Strategy + Random Sampling Strategy

random sampling is used for initialization and then a few clicks are added using the iterative sampling procedure

Incorporating Masks From Previous Steps

- providing additional prior information that can help improve the quality of prediction
- Our model takes this mask as the third channel together with two channels for positive and negative encoded clicks, respectively.

[R, G, B, foreground click, background click, previous mask]

Normalized Focal Loss

$$
\begin{aligned}
& F L(i, j)=-\left(1-p_{i, j}\right)^{\gamma} \log p_{i, j} \\
& P(\hat{M})=\sum_{i, j}\left(1-p_{i, j}\right)^{\gamma} \\
& N F L(i, j, \hat{M})=-\frac{1}{P(\hat{M})}\left(1-p_{i, j}\right)^{\gamma} \log p_{i, j}
\end{aligned}
$$

$P(\hat{\mathcal{M}})$ decreases when the accuracy of the prediction increases
The gradient of NFL does not fade over time due to normalization

Evaluation metric

Number of Clicks (NoC):
the number of clicks required to achieve the predefined IoU

NoC@85
NoC@90
eg:

NoC@85\%	NoC@90\%
1.54	1.68

clicks limit $=20$

Method	GrabCut		Berkeley	SBD		DAVIS		Pascal VOC
	NoC@85	NoC@90	NoC@90	NoC@85	NoC@90	NoC@85	NoC@90	NoC@85
GC [15]	7.98	10.00	14.22	13.60	15.96	15.13	17.41	-
GM [17]	13.32	14.57	15.96	15.36	17.60	18.59	19.50	-
RW [16]	11.36	13.77	14.02	12.22	15.04	16.71	18.31	-
ESC [17]	7.24	9.20	12.11	12.21	14.86	15.41	17.70	-
GSC [17]	7.10	9.12	12.57	12.69	15.31	15.35	17.52	-
DIOS with GC [1]	-	6.04	8.65	-	-	-	-	6.88
Latent diversity [19]	3.20	4.79	-	7.41	10.78	5.05	9.57	-
RIS-Net [20]	-	5.00	6.03	-	-	-	-	5.12
ITIS [14]	-	5.60	-	-	-	-	-	3.80
CAG [36]	-	3.58	5.60	-	-	-	-	3.62
BRS [2]	2.60	3.60	5.08	6.59	9.78	5.58	8.24	-
FCA-Net (SIS) [22]	-	2.08	3.92	-	-	-	7.57	2.69
IA+SA [3]	-	3.07	4.94	-	-	5.16	-	3.18
f-BRS-B [4]	2.50	2.98	4.34	5.06	8.08	5.39	7.81	-
Ours H18	1.96	2.41	3.95	4.12	6.66	5.08	7.17	2.94
SBD H18 IT-M	1.76	2.04	3.22	3.39	5.43	4.94	6.71	$\underline{2.51}$
	H18	1.54	1.70	2.48	4.26	6.86	4.79	6.00
2.59								
Ours H18s IT-M	1.54	1.68	2.60	4.04	6.48	4.70	5.98	2.57
C+L H18 IT-M	1.42	1.54	$\underline{2.26}$	3.80	6.06	4.36	$\underline{5.74}$	2.28
H32 IT-M	1.46	1.56	2.10	3.59	5.71	4.11	5.34	2.57

Ablation Studies

Table 1

Ablation studies of the network architecture choices described in Section 3.1. Each cell consists of two results "X/Y", where "X" and "Y" correspond to evaluation without and with f-BRS-B[4], respectively. "DT" stands for the distance transform clicks encoding. All models are trained on SBD.

Backbone	Input	Clicks	NoC_{20} @90	
	Scheme	Encoding	Berkeley	DAVIS
ResNet-34	DMF [4]	DT	$5.50 / 4.32$	$8.45 / 8.34$
	Conv1E	DT	$4.79 / 4.43$	$7.56 / 7.60$
	Conv1S	DT	$4.98 / 4.16$	$7.41 / 7.28$
	Conv1S	Disk3	$4.52 / 4.04$	$7.27 / 7.18$
	Conv1S	Disk5	$4.09 / 3.89$	$6.92 / 7.22$
HRNet-18	DMF [4]	DT	$4.93 / 4.35$	$8.59 / 8.00$
	Conv1E	DT	$4.41 / 3.95$	$7.50 / 7.43$
	Conv1S	DT	$3.99 / 3.81$	$7.16 / 7.24$
	Conv1S	Disk3	$3.63 / 3.47$	$7.14 / 7.04$
	Conv1S	Disk5	$3.52 / 3.50$	$6.90 / 6.97$

HRNet-18 and ResNet-34 models with Conv1S show better performance
Disk encoding significantly improves results of both HRNet-18 and ResNet-34

Disk + Conv1S + HRNet

Ablation Studies

Method	$\mathrm{NoC}_{20} \mathrm{Q90}$			
	GrabCut	Berkeley	SBD	DAVIS
BCE	1.82	3.13	7.58	6.31
Soft loU	2.02	3.03	7.94	6.45
FL	1.80	3.28	7.56	6.40
NFL	$\mathbf{1 . 7 0}$	$\mathbf{2 . 4 8}$	$\mathbf{6 . 7 2}$	$\mathbf{5 . 9 0}$

NFL leads to better accuracy and convergence on all 4 datasets

Ablation Studies

$N_{\text {iters }}$	Prev	NoC_{20} @90		
	Mask	Berkeley	DAVIS	SBD
3	-	2.38	5.92	6.49
3	+	2.26	5.74	6.06
1	+	2.57	5.81	6.15
2	+	2.48	5.70	6.10
3	+	2.26	5.74	6.06
4	+	2.52	6.03	$\mathbf{6 . 0 4}$
5	+	2.49	5.98	6.24
6	+	2.55	6.11	6.82

too high N values (>4) lead to instability during training and to worse results

GrabCut

Ablation Studies

model that takes a mask from a previous step is much more stable and converges to a better loU

Method	Train Data	GrabCut [34]		Berkeley [31]	SBD [15]		DAVIS [33]	
		NoC 85	NoC 90	NoC 90	NoC 85	NoC 90	NoC 85	NoC 90
Graph cut [3]	1	7.98	10.00	14.22	13.6	15.96	15.13	17.41
Geodesic matting [12]	1	13.32	14.57	15.96	15.36	17.60	18.59	19.50
Random walker [11]	1	11.36	13.77	14.02	12.22	15.04	16.71	18.31
Euclidean star convexity [12]	1	7.24	9.20	12.11	12.21	14.86	15.41	17.70
Geodesic star convexity [12]	1	7.10	9.12	12.57	12.69	15.31	15.35	17.52
DOS w/o GC [44]	SBD [15]	8.02	12.59	-	14.30	16.79	12.52	17.11
DOS with GC [44]	SBD [15]	5.08	6.08	-	9.22	12.80	9.03	12.58
Latent diversity [22]	SBD [15]	3.20	4.79	-	7.41	10.78	5.05	9.57
RIS-Net [23]	SBD [15]	-	5.00	-	6.03	-	-	-
CM guidance [30]	SBD [15]	-	3.58	5.60	-	-	-	-
BRS [18]	SBD [15]	2.60	3.60	5.08	6.59	9.78	5.58	8.24
f-BRS-B-resnet50 [35]	SBD [15]	2.50	2.98	4.34	5.06	8.08	5.39	7.81
CDNet-resnet50 [5]	SBD [15]	2.22	2.64	3.69	4.37	7.87	5.17	6.66
RITM-hrnet18 [36]	SBD [15]	1.76	2.04	3.22	3.39	5.43	4.94	6.71
Ours-hrnet18s-S2	SBD [15]	1.86	2.06	3.14	4.30	6.52	4.92	6.48
Ours-segformerB0-S2	SBD [15]	1.66	1.90	3.14	4.34	6.51	5.02	7.06
FCANet (SIS) [27]	SBD [15$]+$ PASCAL [9]	-	2.14	4.19	-	-	-	7.90
99\%AccuracyNet [10]	SBD [15]+Synthetic	-	1.80	3.04	3.90	-	-	-
f-BRS-B-hrnet32 [35]	COCO [26]+LVIS [13]	1.54	1.69	2.44	4.37	7.26	5.17	6.50
RITM-hrnet18s [36]	COCO [26]+LVIS [13]	1.54	1.68	2.60	4.04	6.48	4.70	5.98
RITM-hrnet32 [36]	COCO [26]+LVIS [13]	1.46	1.56	2.10	3.59	5.71	4.11	5.34
EdgeFlow-hrnet18 [14]	COCO [26]+LVIS [13]	1.60	1.72	2.40	-	-	4.54	5.77
Ours-hrnet18s-S1	COCO [26]+LVIS [13]	1.64	1.82	2.89	4.74	7.29	4.77	6.56
Ours-hrnet18s-S2	COCO [26]+LVIS [13]	1.48	1.62	2.66	4.43	6.79	3.90	5.25
Ours-hrnet32-S2	COCO [26]+LVIS [13]	1.64	1.80	2.36	4.24	6.51	4.01	5.39
Ours-segformerB0-S1	COCO [26]+LVIS [13]	1.60	1.86	3.29	4.98	7.60	5.13	7.42
Ours-segformerB0-S2	COCO [26]+LVIS [13]	1.40	1.66	2.27	4.56	6.86	4.04	5.49
Ours-segformerB3-S2	COCO [26]+LVIS [13]	1.44	1.50	1.92	3.53	5.59	3.61	4.90
Ours-hrnet32-S2	Large Dataset	1.30	1.34	1.85	4.35	6.61	3.19	4.81
Ours-segformerB3-S2	Large Dataset	1.22	1.26	1.48	3.70	5.84	2.92	4.52

