Reviving Iterative Training with Mask Guidance for Interactive Segmentation

Konstantin Sofiiuk, Ilia A. Petrov* and Anton Konushin**

Visual Understanding lab., AI Center Moscow, Samsung Electronics Co., Lesnaya 5C, Moscow, Russia

RITM	icip2022	36
EdgeFlow	iccv2021	17
CDNet	iccv2021	13
FocalClick	cvpr2022	6
FocusCut	cvpr2022	4
PseudoClick	eccv2022	2

class agnostic segmentation with user's input

Pipeline

The key difference is in the user input:

its main aspects are the encoding and processing of the encoded input

encoding

Disks with a small radius

The changes in disk encoding caused by adding new points or moving existing ones are always **local** and only **slightly** affect the encoding map.

Distance Transform (DT)

A distance transform map can **change drastically** when a new point is added, especially if there are only a few points. In turn, such sudden considerable changes might **confuse a network**.

processing of the encoded input

Iterative Sampling Strategy

```
for click_indx in range(num_iters):
```

```
output = self.net(img, points)
```

points = get_next_points(output, gt_mask, points)

Iterative Sampling Strategy + Random Sampling Strategy

random sampling is used for initialization and then a few clicks are added using the iterative sampling procedure

Incorporating Masks From Previous Steps

- providing additional prior information that can help improve the quality of prediction
- Our model takes this mask as the third channel together with two channels for positive and negative encoded clicks, respectively.

[R, G, B, foreground click, background click, previous mask]

Normalized Focal Loss

$$FL(i,j) = -(1-p_{i,j})^{\gamma} \log p_{i,j}$$

 $P(\hat{M}) = \sum_{i,j} (1 - p_{i,j})^{\gamma}$

$$NFL(i, j, \hat{M}) = -\frac{1}{P(\hat{M})} (1 - p_{i,j})^{\gamma} \log p_{i,j}$$

 $P(\hat{M})$ decreases when the accuracy of the prediction increases

The gradient of NFL does not fade over time due to normalization

Evaluation metric

Number of Clicks (NoC):

the number of clicks required to achieve the predefined IoU

NoC@85

NoC@90

eg:

NoC@85%	NoC@90%
1.54	1.68

clicks limit = 20

Method	Gra	oCut	Berkeley	SBD		DAVIS		Pascal VOC	
	NoC@85	NoC@90	NoC@90	NoC@85	NoC@90	NoC@85	NoC@90	NoC@85	
GC [15]		7.98	10.00	14.22	13.60	15.96	15.13	17.41	_
GM [17]		13.32	14.57	15.96	15.36	17.60	18.59	19.50	_
RW [16]		11.36	13.77	14.02	12.22	15.04	16.71	18.31	_
ESC [17]		7.24	9.20	12.11	12.21	14.86	15.41	17.70	_
GSC [17]		7.10	9.12	12.57	12.69	15.31	15.35	17.52	_
DIOS with G	C [1]	-	6.04	8.65	_	_	_	—	6.88
Latent divers	ity [19]	3.20	4.79	-	7.41	10.78	5.05	9.57	_
RIS-Net [20]		-	5.00	6.03	_	_	_	—	5.12
ITIS [14]		-	5.60	-	_	_	_	—	3.80
CAG [36]		-	3.58	5.60	_	_	_	—	3.62
BRS [2]		2.60	3.60	5.08	6.59	9.78	5.58	8.24	_
FCA-Net (SI	S) [22]	-	2.08	3.92	_	_	_	7.57	2.69
IA+SA [3]		-	3.07	4.94	_	_	5.16	_	3.18
f-BRS-B [4]		2.50	2.98	4.34	5.06	8.08	5.39	7.81	_
Ours H18		1.96	2.41	3.95	4.12	6.66	5.08	7.17	2.94
SBD H18	IT-M	1.76	2.04	3.22	3.39	5.43	4.94	6.71	<u>2.51</u>
H18		1.54	1.70	2.48	4.26	6.86	4.79	6.00	2.59
Ours H18s	IT-M	1.54	1.68	2.60	4.04	6.48	4.70	5. <mark>9</mark> 8	2.57
C+L H18	IT-M	1.42	1.54	2.26	3.80	6.06	4.36	5.74	2.28
H32	IT-M	1.46	<u>1.56</u>	2.10	<u>3.59</u>	<u>5.71</u>	4.11	5.34	2.57

Table 1

Ablation studies of the network architecture choices described in Section 3.1. Each cell consists of two results "X/Y", where "X" and "Y" correspond to evaluation without and with f-BRS-B[4], respectively. "DT" stands for the distance transform clicks encoding. All models are trained on SBD.

Backhono	Input	Clicks	NoC ₂₀ @90			
	Scheme	Encoding	Berkeley	DAVIS		
	DMF [4]	DT	5.50/4.32	8.45/8.34		
	Conv1E	DT	4.79/4.43	7.56/7.60		
ResNet-34	Conv1S	DT	4.98/4.16	7.41/7.28		
	Conv1S	Disk3	4.52/4.04	7.27/7.18		
	Conv1S	Disk5	4.09/3.89	6.92/7.22		
	DMF [4]	DT	4.93/4.35	8.59/8.00		
HRNet-18	Conv1E	DT	4.41/3.95	7.50/7.43		
	Conv1S	DT	3.99/3.81	7.16/7.24		
	Conv1S	Disk3	3.63/3.47	7.14/7.04		
	Conv1S	Disk5	3.52/3.50	6.90/6.97		

HRNet-18 and ResNet-34 models with Conv1S show better performance

Disk encoding significantly improves results of both HRNet-18 and ResNet-34

Disk + Conv1S + HRNet

Method	NoC ₂₀ @90							
	GrabCut	Berkeley	SBD	DAVIS				
BCE	1.82	3.13	7.58	6.31				
Soft IoU	2.02	3.03	7.94	6.45				
FL	1.80	3.28	7.56	6.40				
NFL	1.70	2.48	6.72	5.90				

NFL leads to better accuracy and convergence on all 4 datasets

N 7	Prev	NoC ₂₀ @90				
^{IN} iters	Mask	NoC2 Berkeley D 2.38 2.26 2.57 2.48 2.26 2.52 2.52 2.49 2.55 2.55	DAVIS	SBD		
3	_	2.38	5.92	6.49		
3	+	2.26	5.74	6.06		
1	+	2.57	5.81	6.15		
2	+	2.48	5.70	6.10		
3	+	2.26	5.74	6.06		
4	+	2.52	6.03	6.04		
5	+	2.49	5.98	6.24		
6	+	2.55	6.11	6.82		

too high N values (> 4) lead to instability during training and to worse results

model that takes a mask from a previous step is much more stable and converges to a better IoU

		GrabCut [34]		Berkeley [31]	SBD [15]		DAVIS [33]	
Method	Train Data	NoC 85	NoC 90	NoC 90	NoC 85	NoC 90	NoC 85	NoC 90
Graph cut [3]	/	7.98	10.00	14.22	13.6	15.96	15.13	17.41
Geodesic matting [12]	/	13.32	14.57	15.96	15.36	17.60	18.59	19.50
Random walker [11]	/	11.36	13.77	14.02	12.22	15.04	16.71	18.31
Euclidean star convexity [12]	/	7.24	9.20	12.11	12.21	14.86	15.41	17.70
Geodesic star convexity [12]	/	7.10	9.12	12.57	12.69	15.31	15.35	17.52
DOS w/o GC [44]	SBD [15]	8.02	12.59	_	14.30	16.79	12.52	17.11
DOS with GC [44]	SBD [15]	5.08	6.08	_	9.22	12.80	9.03	12.58
Latent diversity [22]	SBD [15]	3.20	4.79	_	7.41	10.78	5.05	9.57
RIS-Net [23]	SBD [15]	-	5.00	-	6.03	_	_	_
CM guidance [30]	SBD [15]	_	3.58	5.60	_	_	_	_
BRS [18]	SBD [15]	2.60	3.60	5.08	6.59	9.78	5.58	8.24
f-BRS-B-resnet50 [35]	SBD [15]	2.50	2.98	4.34	5.06	8.08	5.39	7.81
CDNet-resnet50 [5]	SBD [15]	2.22	2.64	3.69	4.37	7.87	5.17	6.66
RITM-hrnet18 [36]	SBD [15]	1.76	2.04	3.22	3.39	5.43	4.94	6.71
Ours-hrnet18s-S2	SBD [15]	1.86	2.06	3.14	4.30	6.52	4.92	6.48
Ours-segformerB0-S2	SBD [15]	1.66	1.90	3.14	4.34	6.51	5.02	7.06
FCANet (SIS) [27]	SBD [15]+PASCAL [9]	-	2.14	4.19	-	-	-	7.90
99%AccuracyNet [10]	SBD [15]+Synthetic	-	1.80	3.04	3.90	-	-	-
f-BRS-B-hrnet32 [35]	COCO [26]+LVIS [13]	1.54	1.69	2.44	4.37	7.26	5.17	6.50
RITM-hrnet18s [36]	COCO [26]+LVIS [13]	1.54	1.68	2.60	4.04	6.48	4.70	5.98
RITM-hrnet32 [36]	COCO [26]+LVIS [13]	1.46	1.56	2.10	3.59	5.71	4.11	5.34
EdgeFlow-hrnet18 [14]	COCO [26]+LVIS [13]	1.60	1.72	2.40	-	-	4.54	5.77
Ours-hrnet18s-S1	COCO [26]+LVIS [13]	1.64	1.82	2.89	4.74	7.29	4.77	6.56
Ours-hrnet18s-S2	COCO [26]+LVIS [13]	1.48	1.62	2.66	4.43	6.79	3.90	5.25
Ours-hrnet32-S2	COCO [26]+LVIS [13]	1.64	1.80	2.36	4.24	6.51	4.01	5.39
Ours-segformerB0-S1	COCO [26]+LVIS [13]	1.60	1.86	3.29	4.98	7.60	5.13	7.42
Ours-segformerB0-S2	COCO [26]+LVIS [13]	1.40	1.66	2.27	4.56	6.86	4.04	5.49
Ours-segformerB3-S2	COCO [26]+LVIS [13]	1.44	1.50	1.92	3.53	5.59	3.61	4.90
Ours-hrnet32-S2	Large Dataset	1.30	1.34	1.85	4.35	6.61	3.19	4.81
Ours-segformerB3-S2	Large Dataset	1.22	1.26	1.48	3.70	5.84	2.92	4.52