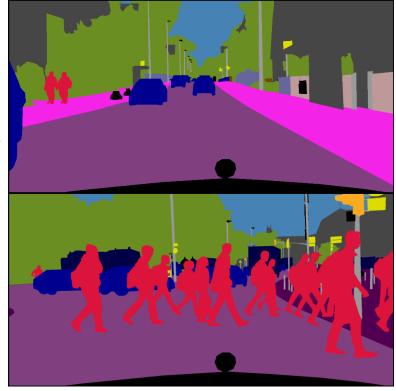
Prototype-based

Domain Adaptation

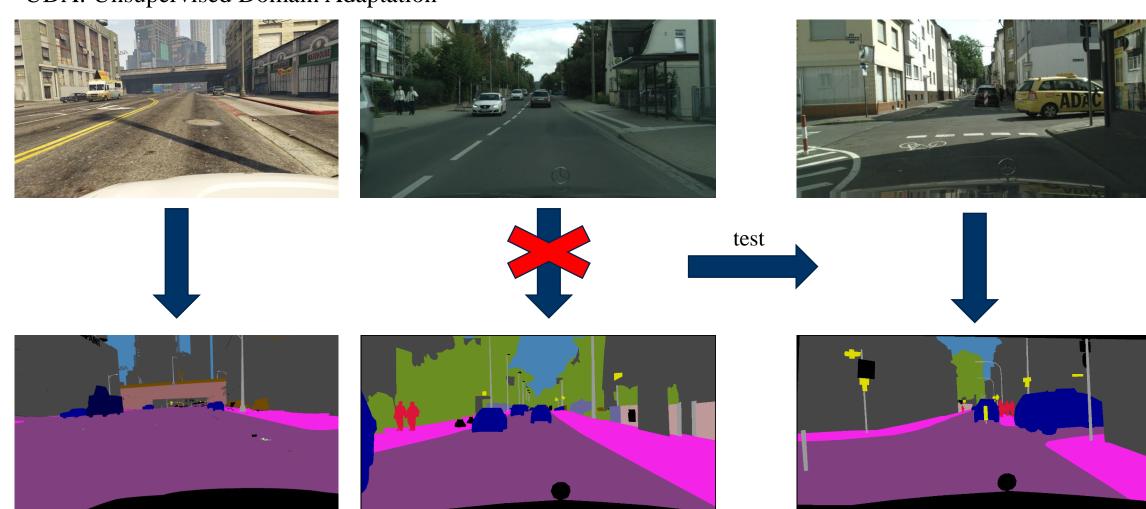
01 Background

Annotations are particularly costly as every pixel has to be labeled



01 What is UDA?

UDA: Unsupervised Domain Adaptation



Label:

Image:

Domain Adaptation

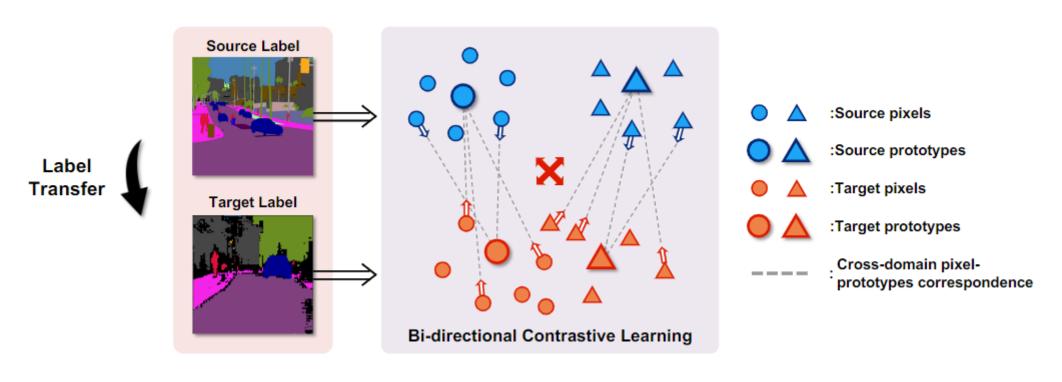
Bi-directional Contrastive Learning for Domain Adaptive Semantic Segmentation

Geon Lee, Chanho Eom, Wonkyung Lee, Hyekang Park, and Bumsub Ham* https://cvlab.yonsei.ac.kr/projects/DASS

Yonsei University

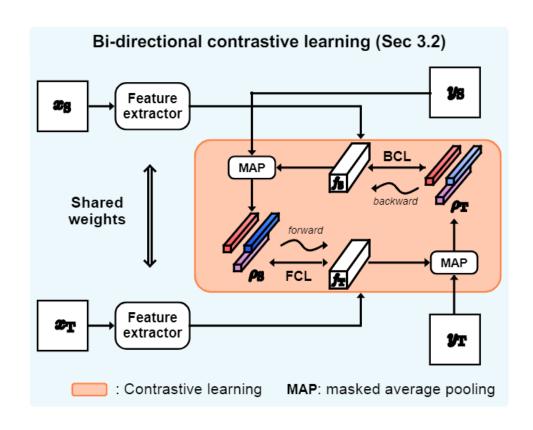
- ECCV 2022
- Motivation

However, they typically focus on reducing the domain discrepancy globally, and fail to keep pixel-level semantics



• Contribution

- We introduce a novel contrastive learning framework using bi-directional pixel-prototype correspondences to learn domain-invariant and discriminative feature representations for UDASS
- We propose a nonparametric approach to generating dynamic pseudo labels. We also present a calibration method to reduce domain biases for pixel-prototype correspondences between target and source domains
- We set a new state of the art on standard benchmarks for UDASS, and demonstrate the effectiveness of our contrast learning framework



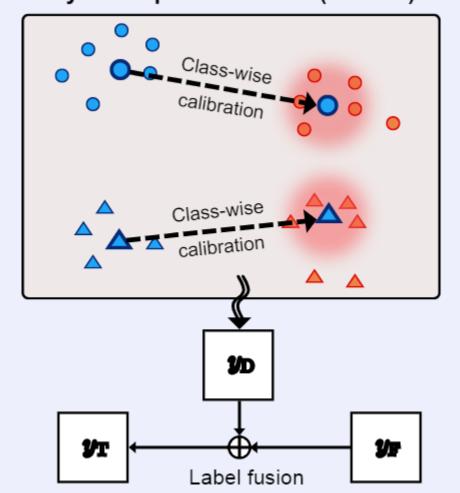
$$\rho_{S}(c) = \frac{\sum_{p} f_{S}(p) y_{S}(p, c)}{\sum_{p} y_{S}(p, c)}, \rho_{T}(c) = \frac{\sum_{p} f_{T}(p) y_{T}(p, c)}{\sum_{p} y_{T}(p, c)},$$

$$\mathcal{L}_{FC} = -\sum_{c} \sum_{p} y_{T}(p, c) \log \frac{\exp \left(s(f_{T}(p), \rho_{S}(c))/\tau\right)}{\sum_{c} \exp \left(s(f_{T}(p), \rho_{S}(c))/\tau\right)},$$

$$\mathcal{L}_{BC} = -\sum_{c} \sum_{p} y_{S}(p, c) \log \frac{\exp \left(s(f_{S}(p), \rho_{T}(c))/\tau\right)}{\sum_{c} \exp \left(s(f_{S}(p), \rho_{T}(c))/\tau\right)}.$$

Segmentation

Dynamic pseudo labels (Sec 3.3)



$$\mu_{\mathrm{S}}(c) \leftarrow \lambda \mu_{\mathrm{S}}(c) + (1 - \lambda) \rho_{\mathrm{S}}(c)$$

$$\mu_{\mathrm{T}}(c) \leftarrow \lambda \mu_{\mathrm{T}}(c) + (1 - \lambda) \rho_{\mathrm{T}}(c)$$

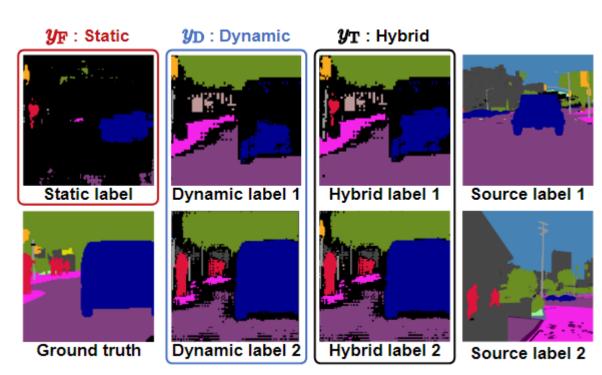
$$\xi(c) = \mu_{\mathrm{T}}(c) - \mu_{\mathrm{S}}(c)$$

$$\rho_{\mathrm{S} \rightarrow \mathrm{T}}(c) = \rho_{\mathrm{S}}(c) + \xi(c).$$

$$y_{\mathrm{D}}(p,c) = \begin{cases} 1, & \text{if } s(f_{\mathrm{T}}(p)), \rho_{\mathrm{S} \rightarrow \mathrm{T}}(c)) > \mathcal{T} \text{and } c = c' \\ 0, & \text{otherwise} \end{cases}$$

$$y_{\mathrm{T}}(p,c) = \begin{cases} y_{\mathrm{D}}(p,c), & \text{if } y_{\mathrm{D}}(p,c) = 1 \\ y_{\mathrm{F}}(p,c), & \text{if } y_{\mathrm{D}}(p,c') = 0 \text{ for } c' \in \mathcal{C}, \text{ and } y_{\mathrm{F}}(p,c) = 1 \\ 0, & \text{otherwise} \end{cases}$$

Segmentation Dynamic pseudo labels (Sec 3.3) Class-wise calibration Class-wise calibration **y**D **y**t ¥F Label fusion



- Experimental Results
- **GTA5**:

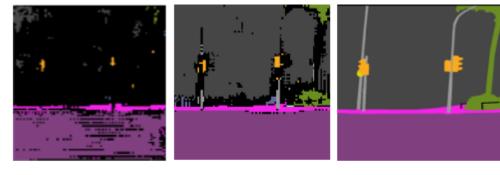
									GTA	$45 \rightarrow$	Citys	capes										
Split	Methods	Type	road	side.	build.	wall	fence	pole	light	sign	veg.	terrian	sky	person	rider	car	truck	snq	train	motor	bike	l NoIm
Se	ource-only	-	45.4	16.5	66.4	14.4	21.6	25.1	36.3	17.2	80.1	16.3	69.1	61.4	24.9	68.6	28.4	4.7	4.4	40.8	27.5	35.2
A	daptSeg [43]	AT	86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
$^{\rm C}$	BST [58]	ST	91.8	53.5	80.5	32.7	21.0	34.0	28.9	20.4	83.9	34.2	80.9	53.1	24.0	82.7	30.3	35.9	16.0	25.9	42.8	45.9
	RST [59]	ST	91.0	55.4	80.0	33.7	21.4	37.3	32.9	24.5	85.0	34.1	80.8	57.7	24.6	84.1	27.8	30.1	26.9	26.0	42.3	47.1
_ <u>6</u> P	LCA [20]	-	84.0	30.4	82.4	35.3	24.8	32.2	36.8	24.5	85.5	37.2	78.6	66.9	32.8	85.5	40.4	48.0	8.8	29.8	41.8	47.7
E C	AG_UDA [53]	ST	90.4	51.6	83.8	34.2	27.8						78.1	58.6	34.6	84.7	21.9	42.7	41.1	29.3	37.2	50.2
	DA [51]	ST	92.5	53.5	82.4	26.5	27.6	36.4	40.6	38.9	82.3	39.8	78.0	62.6	34.4	84.9	34.1	53.1	16.9	27.7	46.4	50.5
Ϋ́	PLD [37]	ST	94.2	60.5	82.8	36.6	16.6	39.3	29.0	25.5	85.6	44.9	84.4	60.6	27.4	84.1	37.0	47.0	31.2	36.1	46.4	51.2
	orDA [47]	ST	94.7	63.1	87.6	30.7	40.6	40.2	47.8	51.6	87.6	47.0	89.7	66.7	35.9	90.2	48.9	57.5	0.0	39.8	56.0	56.6
P	roDA [52]	ST	87.1	55.1	78.1	45.6	43.8	44.6	52.5	53.4	89.1	44.7	82.1	70.1	39.1	88.4	43.8	59.1	1.0	48.7	54.4	56.5
	urs	ST	93.5	60.2	88.1	31.1	37.0	41.9	54.7	37.8	89.9	45.5	89.9	72.7	38.2	90.7	34.3	53.2	4.4	47.2	58.5	57.1
A	daptSeg [43]	AT	88.5	40.4	81.0	26.3	20.6	25.6	36.0	12.9	84.8	45.5	87.2	63.7	35.8	76.4	27.7	28.0	2.9	33.0	26.1	44.3
	BST [58]	ST	91.0	55.4	80.0	33.7	21.4	37.3	32.9	24.5	85.0	34.1	80.8	57.7	24.6	84.1	27.8	30.1	26.9	26.0	42.3	47.1
	RST [59]	ST	93.5	57.6	84.6	39.3	24.1	25.2	35.0	17.3	85.0	40.6	86.5	58.7	28.7	85.8	49.0	56.4	5.4	31.9	43.2	49.9
S F	DA-MBT [51]	ST	93.4	55.8	83.6	25.4	23.1	33.2	39.0	36.9	84.0	47.2	88.8	66.3	40.6	87.4	26.9	49.6	12.8	35.2	42.8	51.2
C	orDA [47]	ST	94.2	62.9	88.1	30.2	41.2	40.1	49.1	49.9	89.1	49.1	90.1	69.1	28.9	86.2	46.2	59.5	1.2	35.2	52.3	57.5
P	roDA [52]	ST	88.1	57.1	81.2	46.1	45.2	41.5	55.1	56.2	86.1	45.1	78.1	73.2	40.1	88.8	48.7	60.1	1.1	50.3	53.1	57.6
O	urs	ST	93.8	59.7	90.1	38.0	33.4	39.9	45.3	30.5	92.2	58.2	94.8	81.9	47.9	93.2	40.1	53.1	13.1	51.2	58.2	58.5

- Experimental Results
- SYNTHIA:

$SYNTHIA \rightarrow Cityscapes$																		
Methods	Type road	side.	build.	wall*	fence*	pole*	light	sign	veg.	sky	person	rider	car	snq	motor	bike	mloU	mIoU*
Source-only	AT 53.4	23.4	73.0	5.5	0.0	25.7	6.6	7.0	77.9	55.3	52.9	21.0	60.9	6.6	21.8	33.7	32.5	37.6
AdaptSeg [43]	AT 84.3	42.7	77.5	-	-	-	4.7	7.0	77.9	82.5	54.3	21.0	72.3	32.2	18.9	32.3	-	46.7
CBST [58]	ST 68.0	29.9	76.3	10.8	1.4	33.9	22.8	29.5	77.6	78.3	60.6	28.3	81.6	23.5	18.8	39.8	38.9	42.6
CRST [59]	ST 67.7	32.2	73.9	10.7	1.6	37.4	22.2	31.2	80.8	80.5	60.8	29.1	82.8	25.0	19.4	45.3	43.8	50.1
CAG_UDA [53	ST 84.7	40.8	81.7	7.8	0.0	35.1	13.3	22.7	84.5	77.6	64.2	27.8	80.9	19.7	22.7	48.3	44.5	51.5
FDA [51]	ST 79.3	35.0	73.2	-	-	-	19.9	24.0	61.7	82.6	61.4	31.1	83.9	40.8	38.4	51.1	-	52.5
PLCA [20]	- 82.6	29.0	81.0	11.2	0.2	33.6	24.9	18.3	82.8	82.3	62.1	26.5	85.6	48.9	26.8	52.2	46.8	54.0
TPLD [37]	ST 80.9	44.3	82.2	19.9	0.3	40.6	20.5	30.1	77.2	80.9	60.6	25.5	84.8	41.1	24.7	43.7	47.3	53.5
CorDA [47]	ST 93.3	61.6	85.3	19.6	5.1	37.8	36.6	42.8	84.9	90.4	69.7	41.8	85.6	38.4	32.6	53.9	55.0	62.8
ProDA [52]	ST 87.3	45.1	84.2	36.5	0.0	43.3	54.7	36.0	88.3	83.1	71.5	24.4	88.4	50.1	40.1	45.6	55.1	61.3
Ours	ST 83.8	42.2	85.3	16.4	5.7	43.1	48.3	30.2	89.3	92.1	68.2	43.1	89.7	47.2	42.2	54.2	55.6	62.9

Ablation study

c.	Cons	\mathcal{L}_{BC}	$+y_{\mathrm{D}}$	$+y_{\mathrm{D}}$	Source dataset GTA5 SYNTHIA					
Lbase	\mathcal{L}_{FC}		(w/o cal.)	(w/ cal.)	GTA5	SYNTHIA				
√					49.5	45.1				
✓	✓				51.2	48.8				
✓	✓	✓			53.5	51.3				
✓	✓	✓	✓		55.3	53.5				
✓	✓	✓		✓	57.1	55.6				



(a) w/o cal.

(b) w/ cal.

(c) GT labels.

Fig. 6: Visualization of dynamic pseudo labels. (a-b) Pseudo labels obtained without and with calibrating prototypes of a source domain; (c) Target labels.

Table 4: Quantitative results for various pseudo labels of a target domain. We report the densities of static, dynamic, and hybrid pseudo labels and corresponding label accuracies.

Pseudo labels	Density(%)	Accuracy(%)
Static [58]	20.1	98.5
Dyn. (w/o cal.)	22.2	98.6
Dyn. (w/ cal.)	34.3	98.6
Hybrid	42.3	98.8