Few-Shot Semantic Segmentation

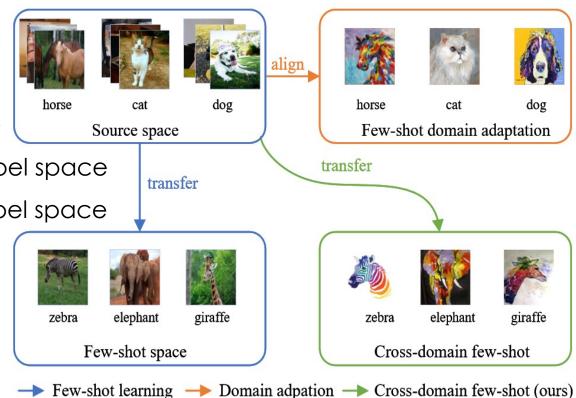
方致远

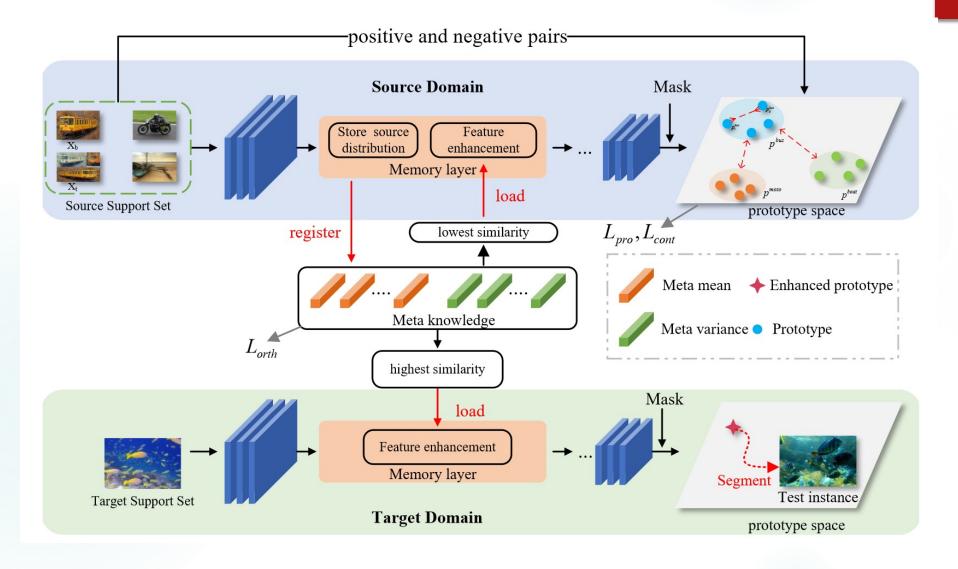
2022.06.26

- Remember the Difference: Cross-Domain Few-Shot Semantic Segmentation via Meta-Memory Transfer
 - Proposing a new setting for few-shot semantic segmentation
- Integrative Few-Shot Learning for Classification and Segmentation
 - Proposing a new setting for few-shot semantic segmentation
- Learning Non-target Knowledge for Few-shot Semantic Segmentation
 - Eliminating background regions
- Learning What Not to Segment: A New Perspective on Few-Shot Segmentation
 - Eliminating background regions

Remember the Difference: Cross-Domain Few-Shot Semantic Segmentation via Meta-Memory Transfer

Wenjian Wang, Lijuan Duan, Yuxi Wang, Qing En, Junsong Fan, Zhaoxiang Zhang

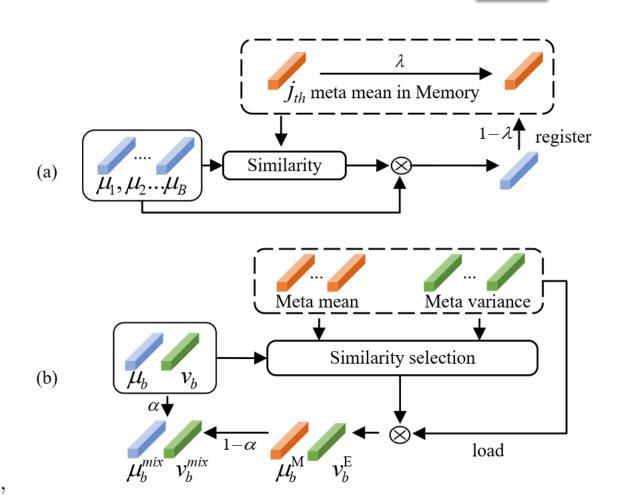

Motivation


Cross domain is a more realistic setting

Few-shot: Same domain, Separate label space

Domain adaption: Separate domains, same label space

Cross domain: Separate domains, Separate label space



Meta memory bank

■ Memory =
$$\{m_j \in R^{1 \times C}, e_j \in R^{1 \times C}\}_{j=1}^N$$

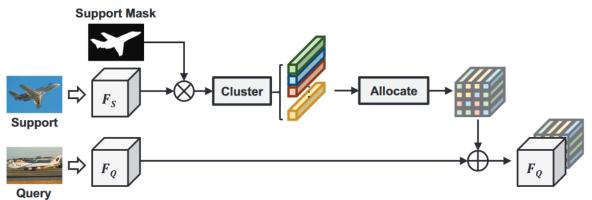
 $m_j = \lambda m_j + (1 - \lambda) \sum_{b=1}^B s_M^{jb} \mu_b$
 $e_j = \lambda e_j + (1 - \lambda) \sum_{b=1}^B s_E^{jb} v_b$
 $L_{orth} = \frac{1}{2N^2} (\sum_{i=1}^N \sum_{j=1}^N h_M^{ij} + \sum_{i=1}^N \sum_{j=1}^N h_E^{ij}),$

Memory-based Feature Enhancement

$$f_b^{enh} = f_b^{norm} v_b^{mix} + \mu_b^{mix},$$

$$\mu_b^{mix} = \alpha \mu_b + (1 - \alpha) \mu_b^M, v_b^{mix} = \alpha v_b + (1 - \alpha) v_b^E,$$

Contrastive loss


$$L_{cont} = \frac{1}{2|B|} \sum_{i=1}^{|B|} -\log \frac{pos(i)}{pos(i) + neg(i)}$$

Cross-entropy loss

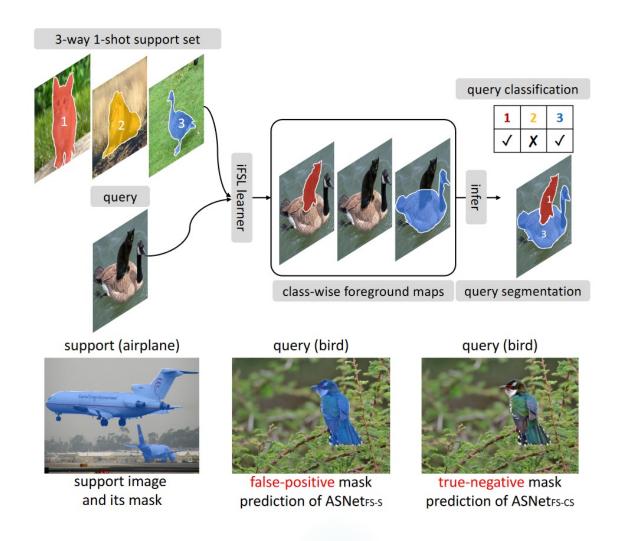
$$L_{pro} = -\frac{1}{HW} \sum_{i=1}^{H} \sum_{j=1}^{W} Y_q^{ij} \log(R(f_q^{ij}, p_b)),$$

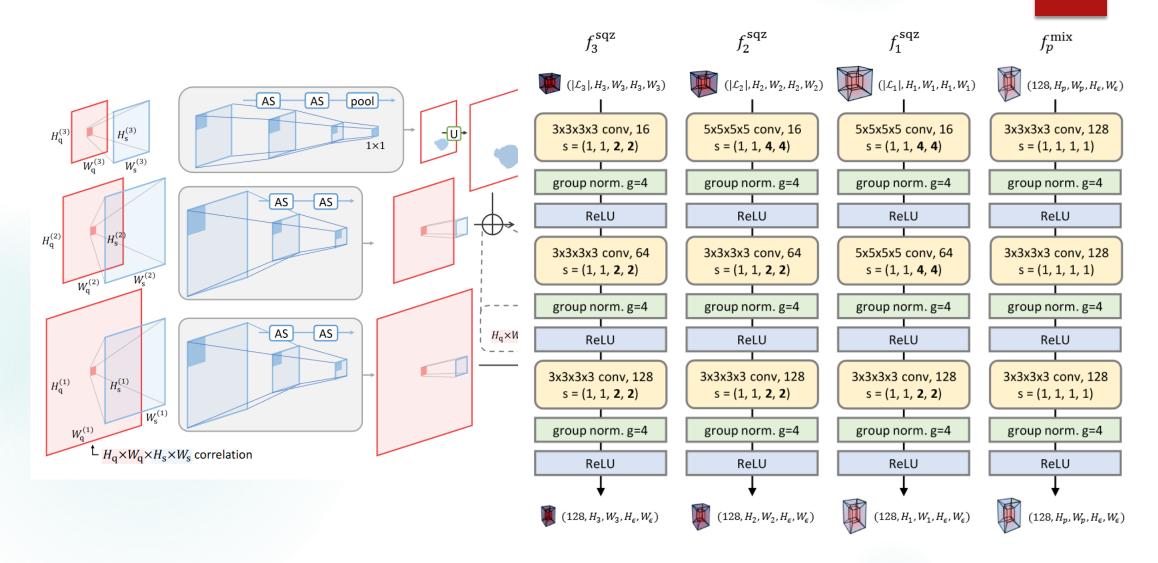
$$L_{all} = L_{orth} + L_{cont} + L_{pro}$$

(b) Adaptive prototype learning and allocation

Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

	${\sf COCO\text{-}}20^i$ to ${\sf SUIM}$													
Backbone	Methods	split-0	split-1	split-2	split-3	mean								
D - N - 450	ASGNet [16] _(CVPR21) HSNet [24] _(ICCV21)	28.1 33.8	27.5 35.9	26.1 35.3	32.3 35.4	28.5 35.1								
ResNet50	SCL [47] _(CVPR21) Ours	27.3 30.5	28.8 38.6	26.5 42.5	25.3 36.6	27.0 37.1								
	PASCAL-5	i to SU	IM											
Backbone	Methods	split-0	split-1	split-2	split-3	mean								
ResNet50	ASGNet [16] _(CVPR21) HSNet [24] _(ICCV21) SCL [47] _(CVPR21) Ours	32.4 30.7 31.3 35.2	30.9 30.0 31.2 33.4	28.9 27.3 32.2 34.3	35.2 27.0 32.5 36	31.9 28.8 31.8 34.7								

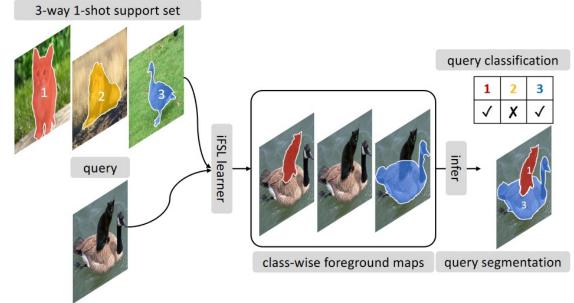

anlitO	oplit1	5-shot	enlit?	Mean
split0	split1	split2	split3	Mean
40.2	58.0	55.2	61.8	53.8
57.0	68.0	70.4	76.2	67.9
53.7	69.8	67.1	75.9	66.6
-	-	-	-	61.9
60.3	65.8	67.1	72.8	66.5
58.2	65.9	71.8	77.9	68.4
65.7	69.2	70.8	75.0	70.1
43.3	61.2	66.5	70.4	60.3
59.1	69.0	73.4	78.7	70.0
67.2	72.7	72.0	78.9	72.7
·				


	COCO-	-20 ⁱ to PASCA	L-5 ⁱ (1-shot)	
Model	Cons	MEnS	MEnT	mean-IoU
BS				57.4
(a)	\checkmark			62.8
(b)	\checkmark	\checkmark		63.5
(c)		\checkmark	\checkmark	62.5
(d)	\checkmark	\checkmark	\checkmark	65.6

Dahyun Kang, Minsu Cho

Integrative task of few-shot classification and segmentation

FS-S learners typically segment out arbitrary salient objects in the query, when a query image without any target class is given.


Hypercorrelation Squeeze for Few-Shot Segmentation (ICCV 2021)

$$\mathcal{L}_{C} = -\frac{1}{N} \sum_{n=1}^{N} \mathbf{y}_{gt}^{(n)} \log \frac{1}{HW} \sum_{\mathbf{p} \in [H] \times [W]} \mathbf{Y}^{(n)}(\mathbf{p}),$$

$$\mathbf{Y}_{\text{bg}} = rac{1}{N} \sum_{n=1}^{N} (\mathbf{1} - \mathbf{Y}^{(n)}),$$

$$\mathbf{Y}_{S} = [\mathbf{Y} || \mathbf{Y}_{bg}] \in \mathbb{R}^{H \times W \times (N+1)}.$$

$$\mathcal{L}_{S} = -\frac{1}{(N+1)} \frac{1}{HW} \sum_{n=1}^{N+1} \sum_{\mathbf{p} \in [H] \times [W]} \mathbf{Y}_{gt}^{(n)}(\mathbf{p}) \log \mathbf{Y}_{S}^{(n)}(\mathbf{p}),$$

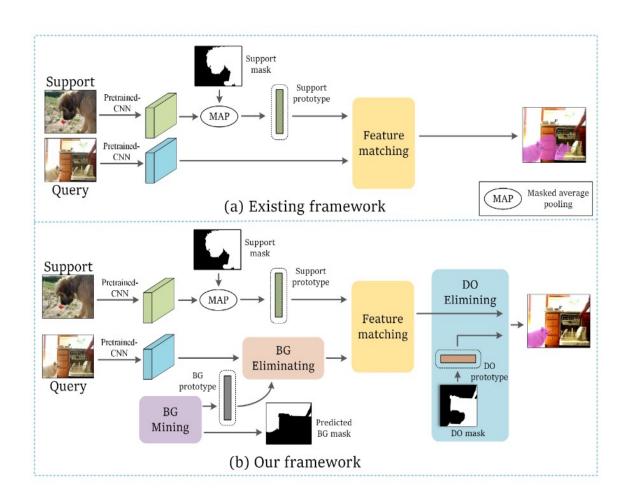
		1-way 1-shot										2-way 1-shot								
	classification 0/1 exact ratio (%)					S	segmentation mIoU (%)				classification 0/1 exact ratio (%)				segmentation mIoU (%)					
method	5^0	5^1	5^2	5^3	avg.	5 ⁰	5^1	5^2	5^3	avg.	5^0	5^1	5^2	5^3	avg.	$\overline{5^0}$	5^1	5^2	5^3	avg.
PANet [78]	69.9	67.7	68.8	69.4	69.0	32.8	45.8	31.0	35.1	36.2	56.2	47.5	44.6	55.4	50.9	33.3	46.0	31.2	38.4	37.2
PFENet [73]	69.8	82.4	68.1	77.9	74.6	38.3	54.7	35.1	43.8	43.0	22.5	61.7	40.3	39.5	41.0	31.1	47.3	30.8	32.2	35.3
HSNet [44]	86.6	84.8	76.9	86.3	83.7	49.1	59.7	41.0	49.0	49.7	68.0	73.2	57.0	70.9	67.3	42.4	53.7	34.0	43.9	43.5
ASNet _w	86.4	86.3	70.9	84.5	82.0	10.8	20.2	13.1	16.1	15.0	71.6	72.4	46.4	68.0	64.6	11.4	20.8	12.5	15.9	15.1
ASNet	84.9	89.6	79.0	86.2	84.9	51.7	61.5	43.3	52.8	52.3	68.5	76.2	58.6	70.0	68.3	48.5	58.3	36.3	48.3	47.8

Table 1. Performance comparison of ASNet and others on FS-CS and Pascal- 5^i [63]. All methods are trained and evaluated under the iFSL framework given strong labels, *i.e.*, class segmentation masks, except for ASNet_w that is trained only with weak labels, *i.e.*, class tags.

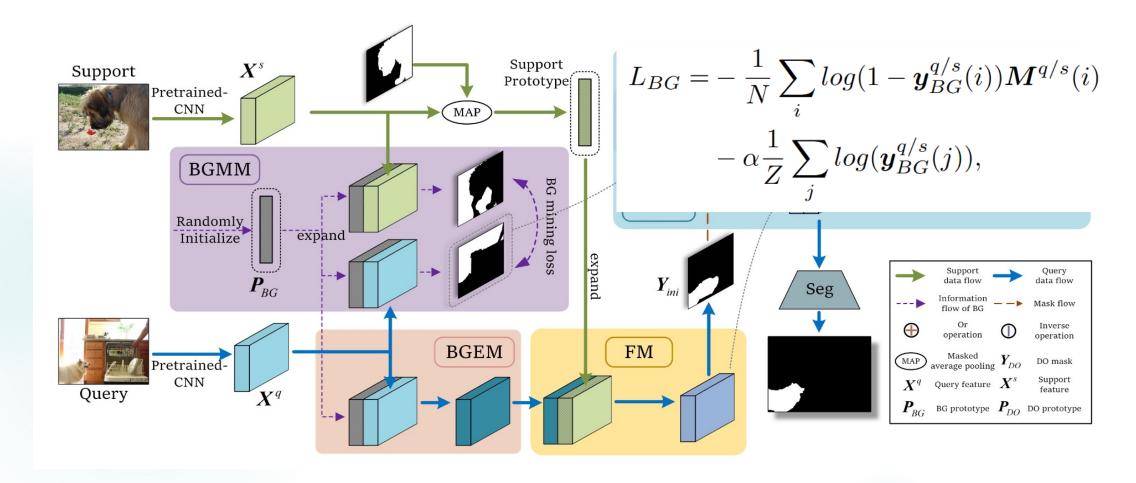
	1-way	y 1-shot	2-way	/ 1-shot
method	ER	mIoU	ER	mIoU
PANet [78]	66.7	25.2	48.5	23.6
PFENet [73]	71.4	31.9	36.5	22.6
HSNet [44]	77.0	34.3	62.5	29.5
ASNet	78.6	35.8	63.1	31.6

method	ER	mIoU
(a) $global \rightarrow local$	83.9	44.6
(b) w/o masked attention	83.8	50.8
(c) w/o multi-layer fusion	83.1	51.6
ASNet	84.9	52.3

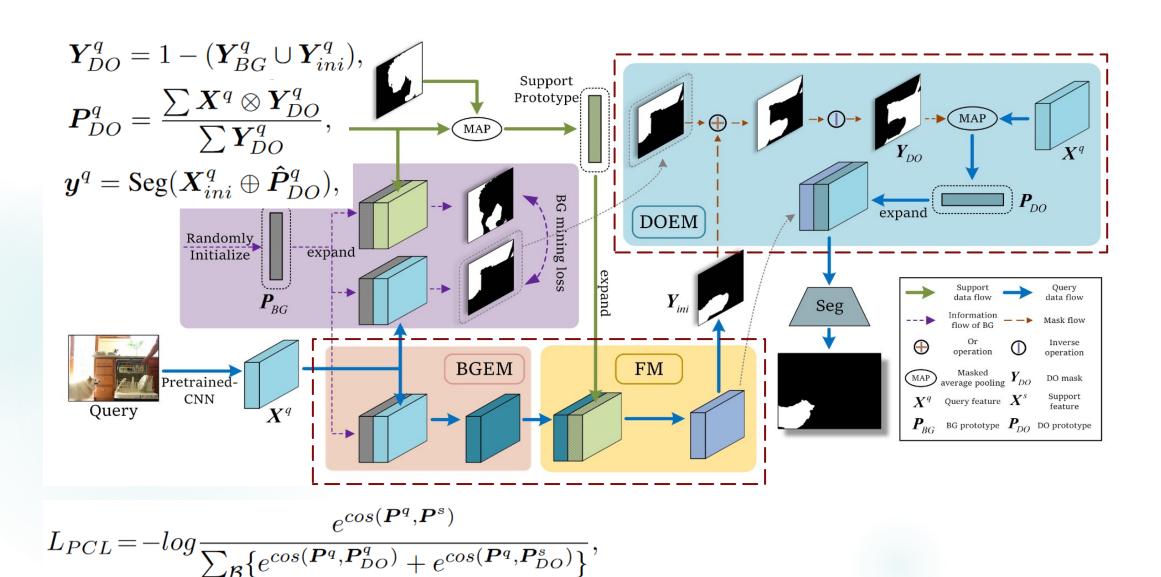
Table 2. Performance comparison of ASNet and others on FS-CS and $COCO-20^i$ [47].


				1-w	ay 1-sho	ot				1-wa	y 5-sho	ot		# learn.
	method	$\overline{5^0}$	5^1	5^2	5^3	mIoU	FBIoU	\int_{0}^{∞}	5^1	5^2	5^3	mIoU	FBIoU	params.
	CANet [98]	52.5	65.9	51.3	51.9	55.4	66.2	55.5	67.8	51.9	53.2	57.1	69.6	-
	PPNet [40]	47.8	58.8	53.8	45.6	51.5	69.2	58.4	67.8	64.9	56.7	62.0	75.8	23.5 M
	PFENet [73]	61.7	69.5	55.4	56.3	60.8	73.3	63.1	70.7	55.8	57.9	61.9	73.9	31.5 M
	SAGNN [87]	64.7	69.6	57.0	57.2	62.1	73.2	64.9	70.0	57.0	59.3	62.8	73.3	-
R50	MMNet [86]	62.7	70.2	57.3	57.0	61.8	-	62.2	71.5	57.5	62.4	63.4	-	10.4 M
	CMN [88]	64.3	70.0	57.4	59.4	62.8	72.3	65.8	70.4	57.6	60.8	63.7	72.8	-
	MLC [90]	59.2	71.2	65.6	52.5	62.1	-	63.5	71.6	71.2	58.1	66.1	-	8.7 M
	HSNet [44]	64.3	70.7	60.3	60.5	64.0	76.7	70.3	73.2	67.4	67.1	69.5	80.6	2.6 M
	ASNet	68.9	71.7	61.1	62.7	66.1	77.7	72.6	74.3	65.3	67.1	70.8	80.4	1.3 M

		1-way	y 1-shot	1-way	1-way 5-shot			
	method	mIoU	FBIoU	mIoU	FBIoU	params.		
	RPMM [89]	30.6	-	35.5	-	38.6 M		
	RePRI [3]	34.0	-	42.1	-	-		
	MMNet [86]	37.5	-	38.2	-	10.4 M		
R50	MLC [90]	33.9	-	40.6	-	8.7 M		
	CMN [88]	39.3	61.7	43.1	63.3	-		
	HSNet [44]	39.2	68.2	46.9	70.7	2.6 M		
	ASNet	42.2	68.8	47.9	71.6	1.3 M		


Yuanwei Liu, Nian Liu, Qinglong Cao, Xiwen Yao, Junwei Han, Ling Shao

Existing FSSS methods are often hard to tell **non-target** regions


Mine and eliminate Background (BG) and Distracting Objects (DOs) in the query

BGMM

Picanet: Learning pixel-wise contextual attention for saliency detection. (CVPR 2018)

	Backbone	Me	thods			1	-Shot					5-	Shot				
	Dackoone			Fold-0	Fold-1	Fold-2	Fold-3	Mean	FB-IoU	Fold-0	Fold-1	Fold-2	Fold-3	Mean	FB-IoU		
		OSLS	SM [26]	33.6	55.3	40.9	33.5	40.8	61.3	35.9	58.1	42.7	39.1	44.0	61.5		
	alchana	Mat	hada				1-Sh	ot						5-	Shot		
D	ackbone	Met	hods	Fold-0	Fold	d-1 F	Fold-2	Fold-3	Mean	FB-IoU	J Fo	ld-0	Fold-1	Fold-2	Fold-3	Mean	FB-IoU
		PPNet	[20]	28.1 30.		.8	29.5	27.7	29.0	-	39	9.0	40.8	37.1	37.3	38.5	-
		RPMN	[37]	29.5	36	.8	28.9	27.0	30.6	-	3.	3.8	42.0	33.0	33.3	35.5	-
D o		1000	r - F1 43						24.6	60.4		-	-	-	-	42.5	67.0
Re	BGEM	DOEM	PCL		Fold-1	Fold-2			Precisio	on _	3'	7.0	40.3	39.3	36.0	38.2	-
			- [60.8	68.2	55.4	55.3	60.0	61.9	-	54	4.1	41.2	34.1	33.1	40.6	-
	√	,		63.2	71.1	57.7	57.4	62.4	62.8	68.5	3	8.2	44.1	40.4	38.4	40.3	69.2
	√	√		64.7 65.4	71.9 72.3	58.8 59.4	59.0 59.8	63.6 64.2	63.3 63.6	62.3		-	-	-	-	29.6	63.9
		<u> </u>	<u> </u>	03.4	12.3	39.4	39.0	04.2	03.0	- -	3	8.9	40.5	41.5	38.7	39.9	-
Day	sNet-101	PFEN	et [31]	34.3	33	.0	32.3	30.1	32.4	58.6	3	8.5	38.6	38.2	34.3	37.4	61.9
Kes	sinet-101	MLC [[38]	50.2	37	.8	27.1	30.4	36.4	-	5'	7.0	46.2	37.3	37.2	44.4	-
		SAGN	N [36]	36.1	41	.0	38.2	33.5	37.2	60.9	4	0.9	48.3	42.6	38.9	42.7	63.4
		NTRE	Net	38.3	40	.4	39.5	38.1	39.1	67.5	42	2.3	44.4	44.2	41.7	43.2	69.6
	ResNet-10	l ReRP	η [1]	59.6	68.6	62.2	47.2	59.4		66.2	71.4	67.0	57.7	65.6	_		
		MLC		60.8	71.3	61.5	56.9	62.6	-	65.8	74.9	71.4	63.1	68.8	-		
		NTRI		65.5	71.8	59.1	58.3	63.7	75.3	67.9	73.2	60.1	66.8	67.0	78.2		