Learning What Not to Segment: A New Perspective on Few-Shot Segmentation

----- Chunbo Lang, Gong Cheng, Binfei Tu, CVPR 2022 oral

方致远 2022.05.08

Few-shot Segmentation

Semantic Segmentation

- Segment the targets of semantic categories (seen)
- Required a large amount of labeled data
- Can not handle the unseen categories

Few-shot Segmentation:

- Segment the targets of a specific semantic category (unseen)
- leveraging few labeled data

Few-shot Segmentation

Train set D_{train} with categories C_{base} , test set D_{test} with categories C_{novel}

 $\blacksquare C_{base} \cap C_{novel} = \emptyset$

- Input construction: episode = $\{S, Q\}^N$
 - Support set $S = \{(x_i^s, m_i^s)\}_{i=1}^K$
 - Query set $Q = \{(x_i^q, m_i^q)\}$
 - The categories of *S* and *Q* are the **same**

• Prediction = $f(Q \mid S)$

Motivation

(a) Conventional approaches to train the FSS m

- introduce a bias towards the seen classes than being ideally class-agnostic
- sensitive to the quality of support images

(b) Proposed BAM

- Base learner identify confusable regions in the query image
- base learner provide highly reliable segmentation results

. . . .

Method - Base learner

Base learner: PSPNet trained on D_{base} $\mathbf{f}_{b}^{q} = \mathcal{F}_{conv} \left(\mathcal{E} \left(\mathbf{x}^{q} \right) \right) \in \mathbb{R}^{c \times h \times w},$ $\mathbf{p}_{b} = \operatorname{softmax} \left(\mathcal{D}_{b} \left(\mathbf{f}_{b}^{q} \right) \right) \in \mathbb{R}^{(1+N_{b}) \times H \times W},$ $\mathcal{L}_{base} = \frac{1}{n_{bs}} \sum_{i=1}^{n_{bs}} \operatorname{CE} \left(\mathbf{p}_{b;i}, \mathbf{m}_{b;i}^{q} \right),$

Method - Meta learner

Meta learner: segment the object in query image under the guidance of support images

$$\boldsymbol{\nu}_{s} = \mathcal{F}_{pool}(f_{m}^{s} \odot \mathcal{I}(m^{s})) \in \mathbb{R}^{c}$$

$$p_m = softmax\left(\mathcal{D}_m\left(\mathcal{F}_{guidance}(v_s, f_m^q)\right)\right) \in \mathbb{R}^{2 \times H \times W}$$

• \mathcal{D}_m : ASPP

Method - Ensemble

$$A_{s} = \mathcal{F}_{reshape}(f_{low}^{s}) \in \mathbb{R}^{C_{1} \times N}$$
$$G^{s} = A_{s}A_{s}^{T} \in \mathbb{R}^{C_{1} \times C_{1}}$$
$$\psi = \left| |G^{s} - G^{q}| \right|_{F}$$

$$p_f^0 = \mathcal{F}_{ensemble} \left(\mathcal{F}_{\psi}(p_m^0), p_b^f \right)$$
$$p_f = p_f^0 \bigoplus \mathcal{F}_{\psi}(p_m^1)$$

Method - K-shot

Conventional method: average the support feature vectors

Suboptimal: low quality support images contains less guidance

Weighted fusion: a smaller value of ψ_i indicates a greater contribution

- $\bullet \psi_i = \left| |G_i^s G^q| \right|_F$
- Sort ψ_k , $\psi_k = \text{concate}(\psi_i)$
- $= \eta = softmax\left(w_2^T ReLU(w_1^T \psi_t)\right) \in \mathbb{R}^K$
- \blacksquare η reverts to the original order
- Eving support feature vectors and ψ with η

Dealtheast	M	4.4	1-shot						5-shot			
Backbone		thod	Fold-0	Fold-1	Fold-2	2 Fold-3	Mean	n Fold	0 Fold-1	Fold-2	Fold-3	Mean
	SG-One (TCYB'19)	[67]	40.20	58.40	48.40	38.40	46.3) 41.9	0 58.60	48.60	39.40	47.10
	PANet (ICCV'19)	[56]	42.30	58.00	51.10	41.20	48.10	51.8	0 64.60	59.80	46.50	55.70
	FWB (ICCV'19)	[56]	47.00	59.60	52.60	48.30	51.90	50.9	0 62.90	56.50	50.10	55.10
VGG16 -	CRNet (CVPR'20)	[33]	-	-	-	-	55.20) -	-	-	-	58.50
	PFENet (TPAMI'20)	[51]	56.90	68.20	54.40	52.40	58.00	59.0	69.10	54.80	52.90	59.00
	HSNet (ICCV'21) [37]		59.60	65.70	59.60	54.00	59.70	64.9	<u>0</u> 69.00	64.10	58.60	64.10
	Baseline		<u>59.90</u>	67.51	64.93	55.72	62.0	2 64.0	2 71.51	69.39	63.55	67.12
	BAM (ours)	63.18	70.77	66.14	57.53	64.4	67.3	6 73.05	70.61	64.00	68.76
	CANet (ICCV'19)	[66]	52.50	65.90	51.30	51.90	55.40) 55.5	0 67.80	51.90	53.20	57.10
	PGNet (ICCV'19)	[65]	56.00	66.90	50.60	50.40	56.00	57.7	68.70	52.90	54.60	58.50
	CRNet (CVPR'20)	[33]	-	-	-	-	55.70) -	-	-	-	58.80
ResNet50	PPNet (ECCV'20) [34]		48.58	60.58	55.71	46.47	52.84	58.8	5 68.28	66.77	57.98	62.97
Resileido	PFENet (TPAMI'20) [51]		61.70	69.50	55.40	56.30	60.8	63.1	0 70.70	55.80	57.90	61.90
	HSNet (ICCV'21) [37]		64.30	70.70	60.30	60.50	64.00) <u>70.3</u>	<u>0</u> <u>73.20</u>	67.40	67.10	69.50
	Bas	Baseline		71.41	65.56	58.93	65.4	0 67.2	8 72.38	69.16	66.25	68.77
	BAM (ours)	68.97	73.59	67.55	61.13	67.8	70.5	9 75.05	70.79	67.20	70.91
Backbon	e Method			1	-shot					5-shot		
Backbon	e Method	Fold	-0 Fo	ld-1 F	old-2	Fold-3	Mean	Fold-0	Fold-1	Fold-2	Fold-3	Mean
	FWB [38]	18.3	15 16	.72 1	19.59	25.43	20.02	20.94	19.24	21.94	28.39	22.63
	PFENet [51]	35.40		.10 3	36.80	34.70	36.30	38.20	42.50	41.80	38.90	40.40
VGG16	PRNet [32]	27.4	6 32	.99 2	26.70	28.98	29.03	31.18	36.54	31.54	32.00	32.82
	Baseline	38.4	2 43	.75 4	14.32	39.84	41.58	45.93	48.88	47.87	46.96	47.41
	BAM (ours)	38.9	6 47	.04 4	46.41	41.57	43.50	47.02	52.62	48.59	49.11	49.34
	HFA [31]	28.6	5 36	.02 3	30.16	33.28	32.03	32.69	42.12	30.35	36.19	35.34
	ASGNet [23]	-		-	-	-	34.56	-	-	-	-	42.48
ResNet50		36.3	30 43	.10 3	38.70	38.70	39.20	43.30	51.30	48.20	45.00	46.90
	Baseline	41.9	2 45	.35 4	13.86	41.24	43.09	46.98	51.87	49.49	47.81	49.04
	BAM (ours)	43.4		.59 4	17.49	43.42	46.23	49.26	54.20	51.63	49.55	51.16

MS COCO

消融实验

PT	$\mathcal{L}_{\text{meta}}$	Init.	ψ	mIoU	FB-IoU
				57.61	70.75
1				59.12	71.94
1	1			59.76	72.79
1	1	1		62.49	75.43
1	1	1	1	64.41	77.26

$$p_{f}^{0} = \mathcal{F}_{ensemble} \left(\mathcal{F}_{\psi}(p_{m}^{0}), p_{b}^{f} \right)$$
$$\mathcal{F}(p_{m}^{0} \oplus \psi)$$

nn.Parameter(torch.tensor([[1.0],[0.0]]))

