Not All Images are Worth 16x16 Words: Dynamic Vision Transformers with Adaptive Sequence Length

----- Tsinghua University & Huawei Technologies, arxiv.2021

Fang Zhiyuan 2021.7.23

An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale, ICLR 2021

Replace convolution layers with standard transformer

- Split an image into patches, $x \in H \times W \times C \rightarrow x_p \in N \times (P^2 \cdot C)$
- provide the sequence of linear embeddings, $x_p \in N \times (P^2 \cdot C) \rightarrow x_p \in N \times D$
- Position embeddings
- Additional learnable embedding (class token)

Self-attention

 $a_{1,i} = q^1 \cdot k^1 / \sqrt{d}$, d is the dim of q and k

Multi-head Self-attention (2 heads)

Motivation

- Not be optimal to treat all samples with the same number of tokens
- 14x14 v.s 4x4
 - Accuracy improve 15.9%
 - Increase the FLOPs by 8.5 times

# of tokens	14x14	7x7	4x4
Accuracy	76.7%	70.3%	60.8%
FLOPs	1.78G	0.47G	0.21G

Motivation

- Automatically configure a decent token number
- Main Mechanism
 - Using increasing number of tokens
 - Early terminate
 - Feature-wise reuse
 - Relation-wise reuse

Feature reuse

leverage the image tokens output Z_L^{up} to learn a embedding E_l

 $\blacksquare E_l = f_l(Z_L^{up}) \in \mathbb{R}^{N \times D'}$

Relationship reuse

- Each layer learns a group of attention maps of the relationships among tokens
- These relationships are helpful in learning the downstream Transformer
- Algorithm
 - $Q_l = z_l W^Q, \ K_l = z_l W^K, \ V_l = z_l W^V$
 - Attention $(z_l) = Softmax(A_l)V_l, A_l = Q_lK_l^T/\sqrt{d}$
 - $\blacksquare A^{up} = Concat(A_1^{up}, A_2^{up}, \cdots, A_L^{up}) \in \mathbb{R}^{N_{up} \times N_{up} \times N_{up}^{Att}}$
 - Attention $(z_l) = Softmax(A_l + r_l(A^{up}))V_l$

Early termination

- The i^{th} exit that produces the softmax prediction p_i
- If $\max_{i} p_{ij} \ge \eta_i$, the inference will stop by adopting the p_i as output
- How to get the values of $\{\eta_1, \eta_2, \dots\}$
 - Given a computational budget B > 0, the optimal thresholds can be optimized by:

 $\underset{\eta_1,\eta_2,\cdots}{\text{maximize } Acc(D_{val},\{\eta_1,\eta_2,\cdots\}), s.t.FLOPs(D_{val},\{\eta_1,\eta_2,\cdots\}) \leq B}$

genetic algorithm

Experiments

Figure 6: Top-1 accuracy v.s. GFLOPs on ImageNet. DVT is implemented on top of T2T-ViT-12/14.

Table 2: The practical speed of DVT.

Table 3: Performance of DVT on CIFAR-10/100.

Models	ImageNet (NVID) Top-1 acc.	IA 2080Ti, bs=128) Throughput	Models	CIF Top-1 acc.	AR-10 GFLOPs	CIF/ Top-1 acc.	AR-100 GFLOPs
T2T-ViT-7	71.68%	1574 img/s	T2T-ViT-10	97.21%	1.53	85.44%	1.53
DVT	78.48% (<u></u> †6.80%)	1574 img/s	DVT	97.21%	0.50 (↓3.1x)	85.45%	0.54 (↓2.8x)
T2T-ViT-10	75.15%	1286 img/s	T2T-ViT-12	97.45%	1.78	86.23%	1.78
DVT	79.74% († 4.59%)	1286 img/s	DVT	97.46%	0.52 (↓3.4x)	86.26%	0.61 (↓2.9x)
T2T-ViT-12	76.74%	1121 img/s	T2T-ViT-14	98.19%	4.80	89.10%	4.80
DVT	80.43% († 3.69%)	1128 img/s	DVT	98.19%	0.77 (↓6.2x)	89.11%	1.62 (↓3.0x)
T2T-ViT-14	81.50%	619 img/s	T2T-ViT-19	98.43%	8.50	89.37%	8.50
DVT	81.50%	877 img/s (†1.42x)	DVT	98.43%	1.44 (↓5.9x)	89.38%	1.74 (↓4.9x)
T2T-ViT-19	81.93%	382 img/s	T2T-ViT-24	98.53%	13.69	89.62%	13.69
DVT	81.93%	666 img/s (†1.74x)	DVT	98.53%	1.49 (↓9.2x)	89.63%	1.86 (↓7.4x)

Ablation study

- The three-exit DVT based on T2T-ViT12
- Both the two reuse mechanisms are able to improve the accuracy at the 2nd and 3rd exits
- Computation reusing slightly hurts the accuracy at the 1st exit

Table 4: Effects of feature (F) and relationship (R) reuse. The percentages in brackets denote the additional computation compared to baselines involved by the reuse mechanisms.

Reuse		1 st Exit (7x7)		2nd Exit	(10x10)	3 rd Exit (14x14)	
F	R	Top-1 acc.	GFLOPs	Top-1 acc.	GFLOPs	Top-1 acc.	GFLOPs
	8	70.33%	0.47	73.54%	1.37	76.74%	3.15
1		69.42%	0.47	75.31%	$1.43_{(4.4\%)}$	79.21%	3.31(5.1%)
	1	69.03%	0.47	75.34%	$1.41_{(2.9\%)}$	78.86%	3.34(6.0%)
1	1	69.04%	0.47	75.65%	$1.46_{(6.6\%)}$	80.00%	3.50(11.1%)

 $\underset{\eta_1,\eta_2,\cdots}{\text{maximize Acc}(D_{val},\{\eta_1,\eta_2,\cdots\}), s.t.FLOPs(D_{val},\{\eta_1,\eta_2,\cdots\}) \leq B}$

Ablation study

					in another isneouer	
Table 5: Ablation	studies for 1 st Exit (7x7) Top-1 acc.	^{2nd Exit Top-1 acc.}	reuse. (10x10) GFLOPs	Table 6: Ablation stuc		ox10) GFLOPs
w/o reuse Layer-wise feature reuse Reuse classification token Remove $f_l(\cdot), l \ge 2$ Remove LN in $f_l(\cdot)$	70.08% 69.84% 69.79% 69.33% 69.63%	73.61% 74.31% 74.70% 74.73% 75.05%	1.37 1.43 1.43 1.38 1.42	w/o reuse Layer-wise relationship reuse Reuse final-layer relationships MLP→Linear Naive upsample	Multi-Head Attention	1.37 1.38 1.39 1.38 1.41
Ours	69.44%	75.23%	1.43	Ours		1.41
					Embedded	

Transformer Encoder

Patches

Ablation study

Table 7: Comparisons of early-termination criterions. The accuracy under each budget is reported.

Ablation	Top-1 acc.					
Adiation	0.75G	1.00G	1.25G	1.50G		
Randomly Exit	70.19%	71.66%	72.61%	73.59%		
Entropy-based	73.41%	75.21%	77.08%	78.40%		
Confidence-based (ours)	73.70%	76.22%	77.89%	78.89%		