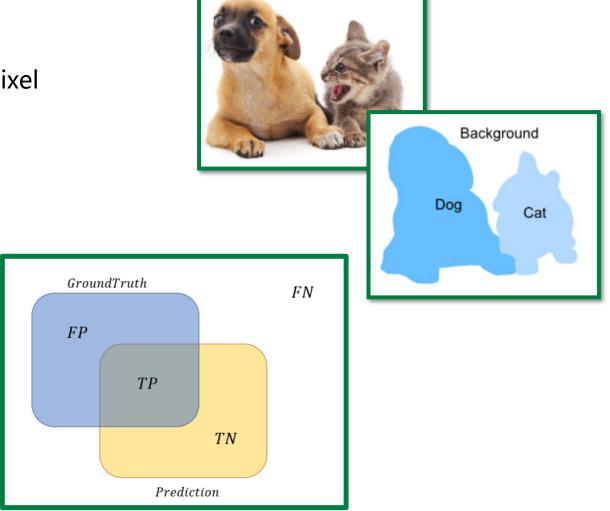


Scale-Aware Graph Neural Network for Few-Shot Semantic Segmentation

Guo-Sen Xie¹, Jie Liu¹, Huan Xiong^{1,3*}, Ling Shao²

¹Mohamed bin Zayed University of AI, UAE ²Inception Institute of Artificial Intelligence, UAE ³Harbin Institute of Technology, China

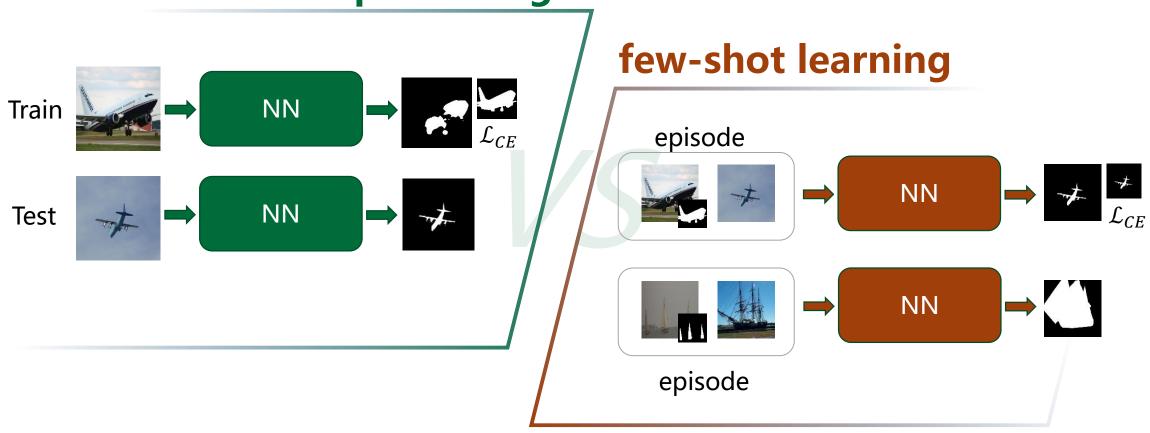
Semantic Segmentation


Semantic Segmentation

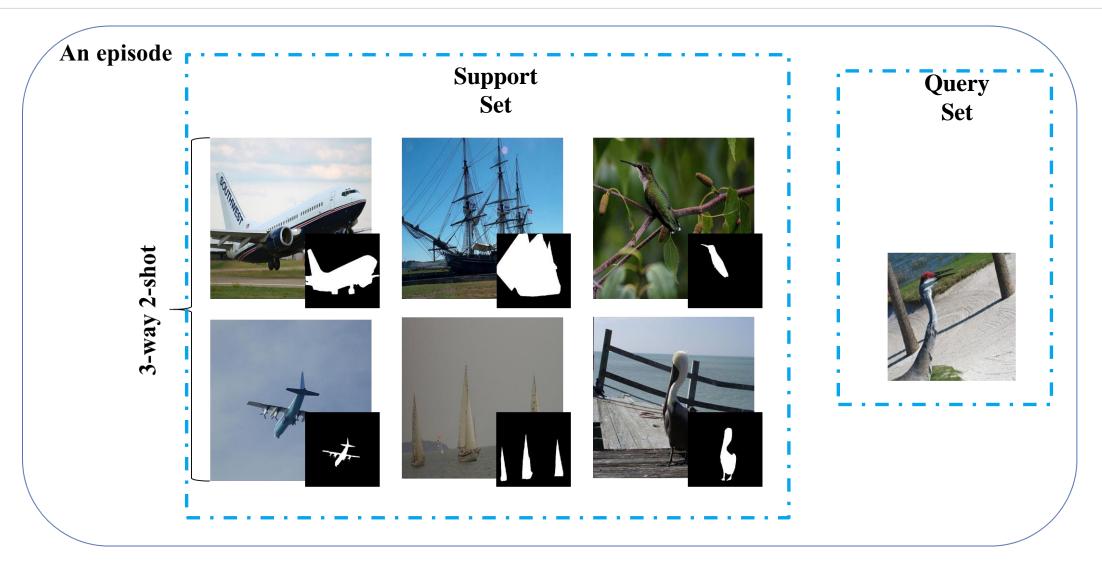
- Category-label prediction for each pixel
- A pixel-wise classification
- mask

IoU

IoU = $\frac{\text{Prediction} \cap \text{GroundTruth}}{\text{Prediction} \cup \text{GroundTruth}}$ $= \frac{\text{T}P}{\text{T}P + \text{T}N + FP}$

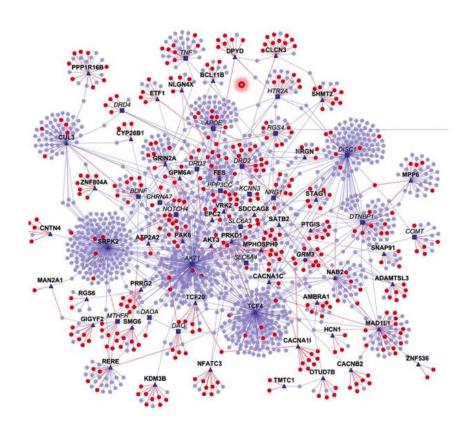

mIoU(mean IoU), FBIoU(binary IoU)

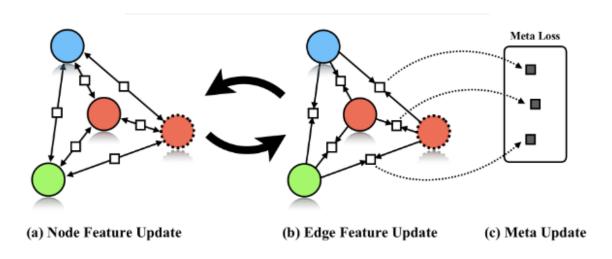
Few-shot learning



Deep Learning

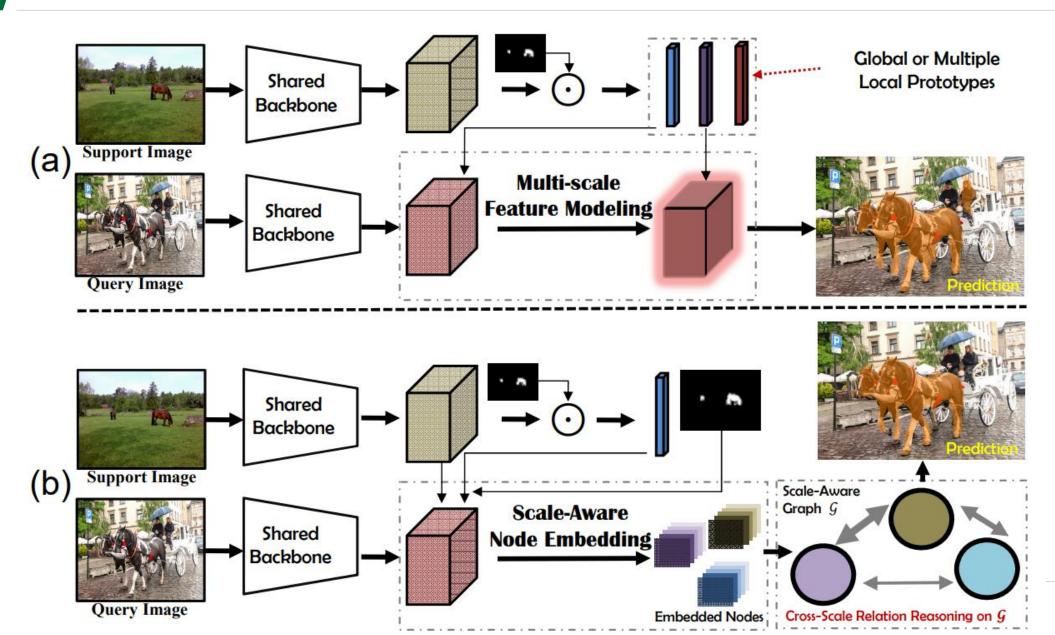
Few-shot Semantic Segmentation



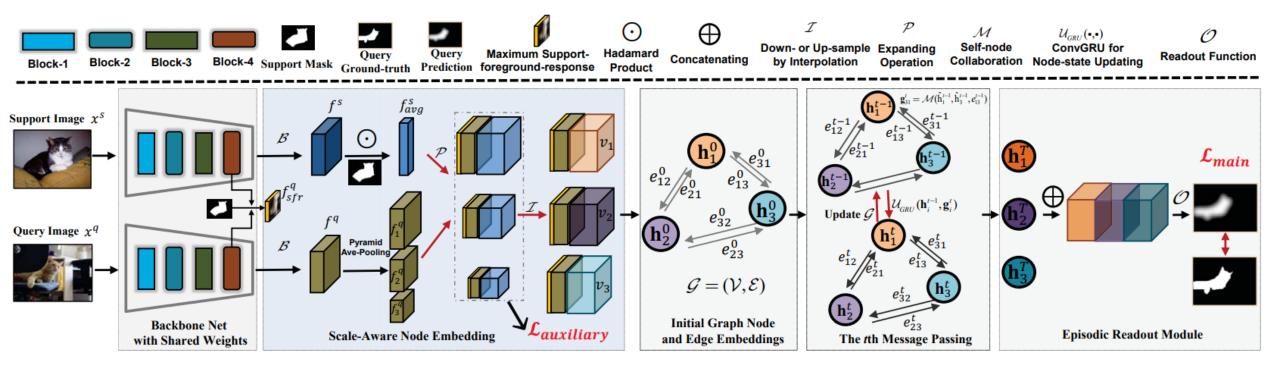

Graph Neural Network(GNN)

$$\mathbf{H} = F(\mathbf{H}, \mathbf{X})$$
 $\mathbf{O} = G(\mathbf{H}, \mathbf{X}_N)$

Update Node (and edge) with Neural Networks

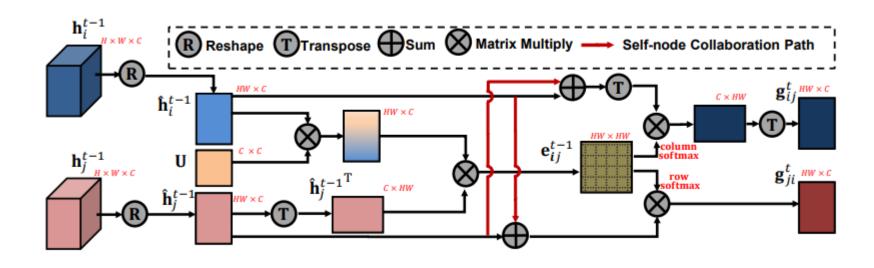


Not suitable for few-shot learning


Motivation

Method

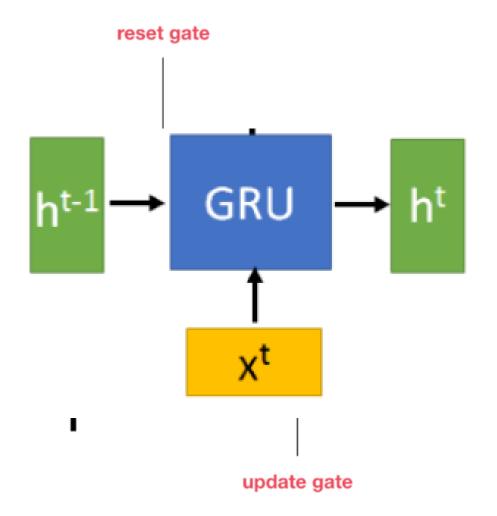
Initial:


Node: Multi-scale concatenated features Edge: Calculated with a learnable matrix

$$\mathbf{h}_{i}^{0} = \mathcal{I}_{H \times W}(\mathcal{C}(\mathbf{f}_{i}^{q} \oplus \mathcal{P}_{H_{i} \times W_{i}}(f_{avg}^{s}) \oplus \mathcal{I}_{H_{i} \times W_{i}}(f_{sfr}^{q}))),$$

$$\mathbf{e}_{ij}^{t} = \hat{\mathbf{h}}_{i}^{t} \mathbf{U} \hat{\mathbf{h}}_{j}^{t^{\mathsf{T}}} \in \mathbb{R}^{HW \times HW},$$

Graph Update



Update:
$$\mathbf{g}_{ji}^{t} = \mathcal{M}(\hat{\mathbf{h}}_{i}^{t-1}, \hat{\mathbf{h}}_{j}^{t-1}, \mathbf{e}_{ij}^{t-1})$$
$$= \operatorname{softmax}(\mathbf{e}_{ij}^{t-1})(\hat{\mathbf{h}}_{j}^{t-1} + \hat{\mathbf{h}}_{i}^{t-1}) \in \mathbb{R}^{HW \times C}. \tag{6}$$

Note: both Edges and Nodes are updated in each iteration

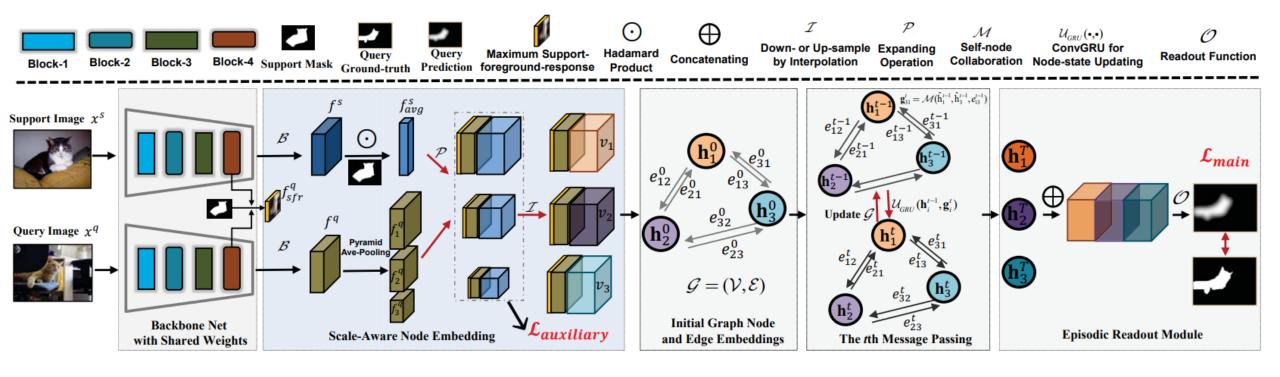
ConvGRU

$$\begin{split} \mathbf{z}_t^l &= \sigma(\mathbf{W}_z^l * \mathbf{x}_t^l + \mathbf{U}_z^l * \mathbf{h}_{t-1}^l), \\ \mathbf{r}_t^l &= \sigma(\mathbf{W}_r^l * \mathbf{x}_t^l + \mathbf{U}_r^l * \mathbf{h}_{t-1}^l), \\ \tilde{\mathbf{h}}_t^l &= \tanh(\mathbf{W}^l * \mathbf{x}_t^l + \mathbf{U} * (\mathbf{r}_t^l \odot \mathbf{h}_{t-1}^l), \\ \mathbf{h}_t^l &= (1 - \mathbf{z}_t^l) \mathbf{h}_{t-1}^l + \mathbf{z}_t^l \tilde{\mathbf{h}}_t^l, \end{split}$$

z : update gate

r : reset gate

h: hidden state


$$\mathbf{g}_{i}^{t} = \mathcal{F}_{\text{reshape}}(\sum_{v_{j} \in \mathcal{V}(i)} \mathbf{g}_{ji}^{t}) \in \mathbb{R}^{H \times W \times C},$$

$$\mathbf{h}_{i}^{t} = \mathcal{U}_{\mathrm{GRU}}(\mathbf{h}_{i}^{t-1}, \mathbf{g}_{i}^{t}) \in \mathbb{R}^{H \times W \times C}.$$

[1]Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville. Delving deeper into convolutional networks for learning video representations. In arXiv:1511.06432, 2015. 5

Method

Initial:

Node: Multi-scale concatenated features Edge: Calculated with a learnable matrix

$$\mathbf{h}_{i}^{0} = \mathcal{I}_{H \times W}(\mathcal{C}(\mathbf{f}_{i}^{q} \oplus \mathcal{P}_{H_{i} \times W_{i}}(f_{avg}^{s}) \oplus \mathcal{I}_{H_{i} \times W_{i}}(f_{sfr}^{q}))),$$

$$\mathbf{e}_{ij}^{t} = \hat{\mathbf{h}}_{i}^{t} \mathbf{U} \hat{\mathbf{h}}_{j}^{t^{\mathsf{T}}} \in \mathbb{R}^{HW \times HW},$$

Experiment

Methods Backbone		mean-IoU (1-shot) FB-1			FB-IoU	mean-IoU (5-shot)				FB-IoU			
Wethods	Dackbone	Fold-0	Fold-1	Fold-2	Fold-3	Mean	(1-shot)	Fold-0	Fold-1	Fold-2	Fold-3	Mean	(5-shot)
OSLSM (BMVC'17) [27]	VGG-16	33.6	55.3	40.9	33.5	40.8	61.3	35.9	58.1	42.7	39.1	43.9	61.5
co-FCN (ICLRW'18) [24]	VGG-16	31.7	50.6	44.9	32.4	41.1	60.1	37.5	50.0	44.1	33.9	41.4	60.2
AMP (ICCV'19) [28]	VGG-16	41.9	50.2	46.7	34.7	43.4	62.2	41.8	55.5	50.3	39.9	46.9	63.8
SG-One (TCYB'19) [48]	VGG-16	40.2	58.4	48.4	38.4	46.3	63.1	41.9	58.6	48.6	39.4	47.1	65.9
PANet (ICCV'19) [34]	VGG-16	42.3	58.0	51.1	41.2	48.1	66.5	51.8	64.6	59.8	46.5	55.7	70.7
CANet (CVPR'19) [47]	ResNet-50	52.5	65.9	51.3	51.9	55.4	66.2	55.5	67.8	51.9	53.2	57.1	69.6
PGNet (ICCV'19) [46]	ResNet-50	56.0	66.9	50.6	50.4	56.0	69.9	57.7	68.7	52.9	54.6	58.5	70.5
FWB (ICCV'19) [22]	ResNet-101	51.3	64.5	56.7	52.2	56.2	-	54.8	67.4	62.2	55.3	59.9	-
PMMs (ECCV'20) [41]	ResNet-50	52.0	67.5	51.5	49.8	55.2	-	55.0	68.2	52.9	51.1	56.8	-
PPNet (ECCV'20) [20]	ResNet-50	47.8	58.8	53.8	45.6	51.5	-	58.4	67.8	64.9	56.7	62.0	-
DAN (ECCV'20) [33]	ResNet-101	54.7	68.6	57.8	51.6	58.2	71.9	57.9	69.0	60.1	54.9	60.5	72.3
PFENet (TPAMI'20) [31]	ResNet-50	61.7	69.5	55.4	56.3	60.8	73.3	63.1	70.7	55.8	57.9	61.9	73.9
BriNet (BMVC'20) [42]	ResNet-50	56.5	67.2	51.6	53.0	57.1	-	-	-	-	-	-	-
SimPropNet (IJCAI'20) [10]	ResNet-50	54.9	67.3	54.5	52.0	57.2	73.0	57.2	68.5	58.4	56.1	60.0	72.9
Baseline	ResNet-50	62.1	68.2	55.3	53.8	59.9	71.7	63.3	68.7	55.1	55.3	60.6	71.8
SAGNN	ResNet-50	64.7	69.6	57.0	57.2	62.1	73.2	64.9	70.0	57.0	59.3	62.8	73.3

	ASGNet (ours)	59.84	67.43	55.59	54.39	59.31	64.55	71.32	64.24	57.33	64.36	5.05
ours-SCL (PFE	ENet) re	snet50	63.0	70.0	56.5	57.7	61.8	64.5	70.9	57.3	58.7	62.9

*ResNet101

Experiment

Backbone	mean-IoU					
Dackbone	1-shot	5-shot				
VGG-16	58.4	59.3				
ResNet-50	62.1	62.8				
ResNet-101	60.8	61.5				

Table 3. Effects of backbones.

5-shot testing	mean-IoU	FB-IoU
1-shot baseline	62.1	73.2
Feature-Avg	62.8	73.3
Mask-Avg	62.5	72.4
Mask-OR	61.8	72.0

Table 4. Feature fusion under 5-shot setting.

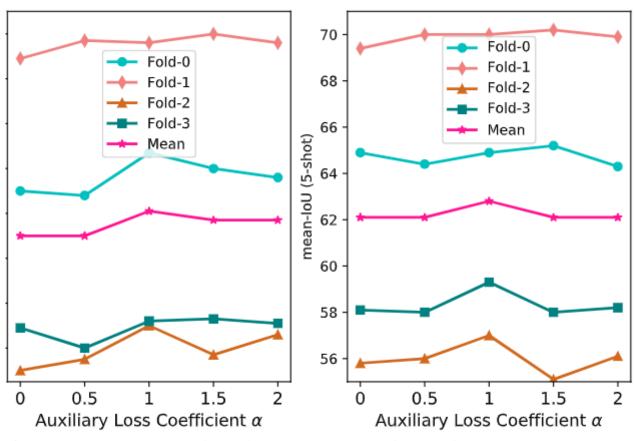
Setti	ng	mean-IoU			
$ \mathcal{V} $	T	1-shot	5-shot		
1	1	n.a.	n.a.		
2	1	61.0	61.7		
3	1	62.1	62.8		
4	1	61.0	61.9		
3	1	62.1	62.8		
3	2	62.4	62.9		
3	3	62.1	62.5		

 SAGNN w SC
 61.2
 62.7

 SAGNN w OI
 61.1
 62.4

 Full SAGNN
 62.1
 62.8

Table 6 Effects of self-node


1-shot

Models

mean-IoU

5-shot

Table 6. Effects of self-node collaboration.

5. mean-IoUs under different auxiliary loss coefficients α .

Table 5. Effects of $|\mathcal{V}|$ and T.

