Meta-attention for ViT-backed Continual Learning

Mengqi Xue¹, Haofei Zhang¹, Jie Song^{1,†}, Mingli Song^{1,2} ¹Zhejiang University ²Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Zhejiang University {mqxue, haofeizhang, sjie, brooksong}@zju.edu.cn

Incremental learning

Class Incremental learning

Task Incremental learning

- Learning Step
- predictions with all seen categories/tasks

Incremental learning (Continual learning , lifelong learning):

- independent and identically distributed(独立同分布, i.i.d.)
- Stability-plasticity Dilemma

ViT

Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv:2010.11929, 2020.

Mask methods

Mallya A, Davis D, Lazebnik S. Piggyback: Adapting a single network to multiple tasks by learning to mask weights[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 67-82.

Meta attention

Attention to attention

Generate **binary** mask to control self-Attention:

Learnable parameters $t \in \mathbb{R}^2$

Gumbel-Softmax estimator:

$$m^{i} = \frac{\exp((\log(t^{i,1}) + g^{1})/\tau)}{\sum_{k=1}^{2} \exp((\log(t^{i,k}) + g^{k})\tau)},$$

Objective

A. \mathcal{L}_{ce}

B. $\mathcal{L}_{dc}(m) = \frac{1}{L} \sum_{l=1}^{L} \left(\lambda - \frac{1}{n} \sum_{i=1}^{n} m_{l}^{i} \right)^{2}$,

Drop-control loss is to prevent excessive patch dropping with hyper-parameter λ =0.9

	Detect	Method											
	Dataset	Individual	Classifier	LwF [27]	Piggyback [30]	HAT [41]	Adaptor-B [16]	MEAT					
	CUB	75.13	46.05	59.03	60.65	68.34	66.03	71.16					
	Cars	69.82	16.27	39.39	44.87	50.57	45.50	53.42					
	FGVC	70.00	14.35	38.87	45.58	46.71	41.28	52.69					
гл	WikiArt	72.13	38.64	46.88	62.42	61.84	57.04	64.63					
	Sketches	73.50	30.64	53.17	69.07	65.49	69.21	70.73					
)ei	CIFAR-100	83.85	66.05	69.79	71.18	70.67	75.21	78.13					
-	ImagaNat	30.82	72.20	26.24	72.20	N/A	72.20	72.20					
	magervet	(0.00)	(0.00)	(↓ 45.96)	(0.00)	N/A	(0.00)	(0.00)					
	Model Size	149 MB	23 MB	23 MB	26 MB	23 MB	29 MB	25 MB					
	Widder Size	(6.49x)	(0.06x)	(1.00x)	(0.21x)	(1.01x)	(0.28x)	(0.16x)					
	CUB	82.69	49.10	69.34	72.89	79.67	77.20	81.53					
	Cars	84.74	18.29	74.00	74.72	73.22	67.23	77.20					
	FGVC	82.69	15.51	55.99	60.04	62.99	57.04	65.69					
	WikiArt	79.48	43.85	65.64	68.09	70.43	71.33	73.43					
Ě	Sketches	80.68	39.80	70.74	75.03	74.97	72.87	76.68					
Dei	CIFAR-100	89.03	72.71	75.67	79.76	79.52	84.00	85.93					
	ImageNet	49.78	79.84	23.01	79.84	N/A	79.84	79.84					
		(0.00)	(0.00)	(↓ 56.83)	(0.00)	N/A	(0.00)	(0.00)					
	Model Size	582 MB	86 MB	86 MB	101 MB	86 MB	99 MB	96 MB					
	Widder Size	(6.77x)	(0.03x)	(1.00x)	(0.15x)	(1.01x)	(0.17x)	(0.14x)					
	CUB	74.47	26.15	45.33	63.57	66.57	64.31	69.90					
	Cars	72.67	11.52	59.01	58.22	54.63	53.79	61.90					
	FGVC	64.09	12.46	42.07	51.47	52.69	48.02	53.55					
-12	WikiArt	73.51	35.57	51.24	60.34	58.53	59.01	61.20					
Liv	Sketches	76.60	18.79	61.98	73.07	71.29	74.02	74.75					
÷	CIFAR-100	85.03	33.10	66.34	70.98	74.86	73.58	77.42					
T 2	ImageNet	32.62	55.42	28.54	55.42	N/A	55.42	55.42					
	magervet	(0.00)	(0.00)	(† 26.88)	(0.00)	N/A	(0.00)	(0.00)					
	Model Size	179 MB	27 MB	27 MB	32 MB	28 MB	36 MB	30 MB					
	Widdel Size	(6.63x)	(0.07x)	(1.00x)	(0.20x)	(1.02x)	(0.30x)	(0.14x)					

Representation Compensation Networks for Continual Semantic Segmentation

Chang-Bin Zhang ^{1*} Jia-Wen Xiao ^{1*} Xialei Liu ^{1†} Ying-Cong Chen ² Ming-Ming Cheng ¹ ¹ TKLNDST, CS, Nankai University ² The Hongkong University of Science and Technology

Overview

Cermelli F, Mancini M, Bulo S R, et al. Modeling the background for incremental learning in semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 9233-9242.

Pooled Cube Distillation

Figure 4. Comparison between PLOP [28] and our proposed Pooled Cube Knowledge Distillation mechanism.

MiB: per-pixel knowledge distillation (KD) PLOP: row & column KD & Local POD RCIL: multi-scale & spatial KD & channel KD

RC Module

Result

	15-5 (2 steps)						15-1 (6 steps)						10-1 (11 steps)					
	Disjoint			Overlapped			Disjoint			Overlapped			Disjoint			Overlapped		
Method	0-15	16-20	all	0-15	16-20	all	0-15	16-20	all	0-15	16-20	all	0-10	11-20	all	0-10	11-20	all
Fine-tuning	5.7	33.6	12.3	6.6	33.1	12.9	4.6	1.8	3.8	4.6	1.8	3.9	6.3	1.1	3.8	6.4	1.2	3.9
Joint	78.2	78.0	78.2	78.2	78.0	78.2	79.8	72.6	78.2	79.8	72.6	78.2	79.8	72.6	78.2	79.8	72.6	78.2
LwF [52]	60.4	37.4	54.9	60.8	36.6	55.0	5.8	3.6	5.3	6.0	3.9	5.5	7.2	1.2	4.3	8.0	2.0	4.8
ILT [63]	64.9	39.5	58.9	67.8	40.6	61.3	8.6	5.7	7.9	9.6	7.8	9.2	7.3	3.2	5.4	7.2	3.7	5.5
MiB [9]	73.0	43.3	65.9	76.4	49.4	70.0	48.4	12.9	39.9	38.0	13.5	32.2	9.5	4.1	6.9	20.0	20.1	20.1
SDR [64]	74.6	44.1	67.3	76.3	50.2	70.1	59.4	14.3	48.7	47.3	14.7	39.5	17.3	11.0	14.3	32.4	17.1	25.1
PLOP [28]	71.0	42.8	64.3	75.7	51.7	70.1	57.9	13.7	46.5	65.1	21.1	54.6	9.7	7.0	8.4	44.0	15.5	30.5
Ours	75.0	42.8	67.3	78.8	52.0	72.4	66.1	18.2	54.7	70.6	23.7	59.4	30.6	4.7	18.2	55.4	15.1	34.3

Table 1. The mIoU(%) of the last step on the Pascal VOC 2012 dataset for different continual class segmentation scenarios. The **red** denotes the highest results and the **blue** denotes the second highest results.

	-50 (2 ste	ps)		100-10 (6 steps)							50-50 (3 steps)				
Method	1-100	101-150	all	1-100	101-110	111-120	121-130	131-140	141-150	all	1-50	51-100	101-150	all	
ILT [63]	18.3	14.8	17.0	0.1	0.0	0.1	0.9	4.1	9.3	1.1	13.6	12.3	0.0	9.7	
MiB [9]	40.7	17.7	32.8	38.3	12.6	10.6	8.7	9.5	15.1	29.2	45.3	26.1	17.1	29.3	
PLOP [28]	41.9	14.9	32.9	40.6	15.2	16.9	18.7	11.9	7.9	31.6	48.6	30.0	13.1	30.4	
Ours	42.3	18.8	34.5	39.3	14.6	26.3	23.2	12.1	11.8	32.1	48.3	31.3	18.7	32.5	
Joint	44.3	28.2	38.9	44.3	26.1	42.8	26.7	28.1	17.3	38.9	51.1	38.3	28.2	38.9	

Table 2. The mIoU(%) of the last step on the ADE20K dataset for different overlapped continual learning scenarios. The **red** denotes the highest results and the **blue** denotes the second highest results.

Class-Incremental Learning with Strong Pre-trained Models

Tz-Ying Wu^{1,2} Gurumurthy Swaminathan¹ Zhizhong Li¹ Avinash Ravichandran¹ Nuno Vasconcelos² Rahul Bhotika¹ Stefano Soatto¹ ¹AWS AI Labs ²UC San Diego

{gurumurs,lzhizhon,ravinash,bhotikar,soattos}@amazon.com

{tzw001,nuno}@ucsd.edu

Motivation

- Task Incremental Learning is not reality in some scenarios.
- Strong pre-trained models benefits Class-Incremental Learning

Observation

and freezing representations. Fixed with lots base classes performs better. The novel class accuracy of fine-tuning each pre-trained model with different numbers of layers.

Network at step t

	ResNet10					ResNet18					
Method	# of params	Acc_{all}	Acc_{base}	Acc_{novel}	Acc_{avg}	# of params	Acc_{all}	Acc_{base}	Acc_{novel}	Acc_{avg}	
fine-tuning	4.9M	4.18	0.01	87.63	43.82	11.2M	4.25	0.00	89.37	44.68	
LwF [15]		9.50	5.54	88.53	47.04		9.50	5.46	90.30	47.88	
iCaRL [23]		16.26	13.91	63.40	38.66		10.65	8.15	60.80	34.78	
BiC [29]		30.30	27.55	85.20	56.38		31.50	28.75	86.60	57.68	
WA [34]		51.33	52.33	31.40	41.87		54.79	55.17	47.20	51.19	
DER w/o P [30]	9.8M	52.31	52.43	50.10	51.27	-	-	-	-	-	
score fusion (ours) best-Accall	8.6M	63.24	63.77	52.67	58.22	19.6M	69.45	70.01	58.13	64.07	
score fusion (ours) best-balanced		62.15	61.49	75.37	68.43		67.36	66.61	82.37	74.49	
score fusion (ours) best- Acc_{avg}		58.90	57.73	82.40	70.06		65.83	64.85	82.50	75.17	
score fusion (ours, fc-only) best-Accall	4.9M	62.65	63.56	44.53	54.05	11.2M	68.79	69.58	53.07	61.32	
score fusion (ours, fc-only) best-balanced		61.01	60.81	65.07	62.94		66.76	66.50	71.83	69.17	
score fusion (ours, fc-only) best-Accavg		57.91	57.24	71.57	64.40		65.89	65.49	73.77	69.63	
joint learning (oracle)	4.9M	63.80	63.94	61.00	62.47	11.2M	70.32	70.43	68.20	69.32	